
NASA-CR-19B013

School of Engineering
Department of Computer Engineering

Santa Clara, CA 95053

Parallel Processing for Scientific _ _ ,_

Computations _- - f ._..f

Final Report

Overview of Research Project Accomplishments

NASA Agreement Number NCC 2-644

March 29, 1995

Submitted to

Mr. Ken Stevens, Jr.
NASA-Ames Research Center

NAS System Division, Mail Stop 258-5
Moffett Field, CA 94035

(415)604-5949

(NASA-CR-I?8013) PARALLEL

PROCESSING FOR SCIENTIFIC

COMPUTATICNS Final Report

Clara Univ.) 49 p

(Santa

N95-24563

Unclas

63/62 0045510



1. Introduction

The scope of this project dealt with the investigation of the requirements to support

distributed computing of scientific computations over a cluster of cooperative workstations.

Various experiments on computations for the solution of simultaneous linear equations were

performed in the early phase of the p[roject to gain experience in the general nature and

requirements of scientific applications. A specification of a distributed integrated computing

environment, DICE, based on a distributed shared memory communication paradigm has

been developed and evaluated. The distributed shared memory model facilitates porting

existing parallel algorithms that have been designed for shared memory multiprocessor

systems to the new environment. The potential of this new environment is to provide

supercomputing capability through the utilization of the aggregate power of workstations

cooperating in a cluster interconnected via a local area network.

Figure 1

Clusters of Cooperating Workstations

The great majority of scientific applications require a fairly large amount of memory to

execute a task. If a task is to be partitioned into threads (sub-tasks) that are executed in



parallel, memory sharing is very desirable since it allows sharing variables among threads

within the same task. Shared memory multiprocessor systems have been the predominant

platform selected for executing large scientific applications for these reasons.

Workstations, generally, do not have the computing power to tackle complex scientific

applications, making them primarily useful for visualization, data reduction, and filtering as

far as complex scientific applications are concerned. There is a tremendous amount of

computing power that is left unused in a network of workstations. Very often a workstation is

simply sitting idle on a desk. A set of tools can be developed to take advantage of this

potential computing power to create a platform suitable for large scientific computations.

The integration of several workstations into a logical cluster of distributed, cooperative,

computing stations presents an alternative to shared memory multiprocessor systems. In this

project we designed and evaluated such a system.

Attached to this report are three papers published or accepted for publication, resulting from

this research project. These articles are:

1. Hasan S. AlKhatib, Qiang Li, Chi-Jiunn Jou, Tiekun Chen and Hassan Arafeh "DICE

- a Distributed Integrated Computing Environment for Multi-threaded Parallel

Processing", Proceedings of the Third International Systems Integration Conference,

Sao-Paulo, Brazil, August 15-19, 1994, pp 612-621.

2. Chi-Jiunn Jou, Hasan S. AlKhatib, Qiang Li and Tiekun Chen "Coherency Protocol and

Algorithm of the DICE Distributed Shared Memory", Proceedings of the ISCA

International Conference on Parallel and Distributed Computing Systems, Las Vegas,

NV, October 6-8, 1994. pp 796-801.

3. Chi-Jiunn Jou, Hasan S. AIKhatib and Qiang Li "Two-Tier Paging and Its Performance

Analysis for Network-based Distributed Shared Memory Systems", accepted for

publication in the IEICE Transactions on Information and Systems.

2. DICE Overview

DICE is a computing environment for executing multi-threaded tasks on a cluster of

networked workstations. In DICE, threads of a parallel task may run on separate

workstations sharing the same virtual address space. Threads communicate with each other

using shared memory. An overall system structure of DICE is shown in Figure 1.

DICE consists of three interactive subsystems: a distributed shared memory (DSM), a parallel

scheduler (PS), and a distributed run-time subsystem (DRS). DSM provides mechanisms for

sharing distributed memory among threads of a parallel task and hence supports the

underlying computing and communication paradigm. PS provides tools to initiate both local

and remote threads and to coordinate their execution over different workstations. DRS



workstation 1

Threads

DRE

"'0i"" "','" "
I

OS

workstation 2

Threads

DRE

"'0i"" ":'"
I

OS

000

workstation n

Threads

DRE

"'0i"" ":'" )Sgl /"
I

OS

Network
I I

Figure 2

System structure for DICE

provides the programmers interface to develop parallel tasks as well as the run-time

environment for their execution.

3. Distributed Shared Memory

In DICE, the physical memories of individual workstations in a cluster are treated as

resources for the virtual space of a multi-threaded parallel task. Pages of the address space of

a task can be shared among the threads of the same task. A task consists of multiple threads

that can run on different workstations in a cluster simultaneously. The virtual memory of

DICE is divided into private and shared spaces. Private space is local to a single workstation,

and is not shared among threads. An example of private space is the stack of a thread. Shared

space is global to all workstations, and is shared among all threads of a parallel task. Shared

space is further divided into read-only code and read-write data spaces. The initial

implementation of DICE will only support the shared data space.

DICE presents a new distributed shared memory design to attack the problems of false

sharing and thrashing. False sharing may occur in a typical distributed shared memory system

such as Ivy[ 1], since its consistency or access unit (eg. per word) is less than the sharing unit

(per page). The single-write nature of its coherency protocol may cause a "ping-pong"

behavior between multiple writers of a shared page, or the thrashing problem. To overcome



these problems, Mach[2] uses a shared memory server to perform the fault scheduling via a

queueing mechanism[3]. Mether[4,5] avoids these problems through the use of the

inconsistency. Clouds[6] avoid these problems by using a single-write-single-reader strict

coherence semantics. Mirage[7] reduces the effect of these problems by using a time window

scheme, in which the system guarantees that the writer of a page retains access to a page for a

fixed period of time. Munin[8] minimizes these problems by using multiple type-specific

coherency protocols.

To overcome these false sharing and thrashing problems, DICE DSM uses a hybrid memory

granularity and supports multiple coherency protocols. Shared memory is structured as a

two-layer paging system. The higher layer is a page, which is the same as the one in an existing

system. The lower layer is a paragraph, which is a small fixed-sized memory region within a

page. The memory sharing unit is a page, while the coherency unit is a paragraph. Each page

in the shared address space is divided into several small equal-sized paragraphs. Each

paragraph uses one and only one specific protocol at a time. The protocol used on a

paragraph can be changed to adapt to new application requirement. The default protocol

used on a paragraph is that of inconsistent memory, which only provides memory sharing

without coherency. Other coherency protocols include write-invalidate, write-update,

write-read-migrate, home-read-write, release-update, and entry-invalidate.

Write-invalidate, write-update, write-read-migrate, and home-read-write protocols

provide a strict consistency on copies of a shared paragraph. They resemble the

read-replication, full-replication, migration, and central algorithms in [9] respectively. Both

release-update and entry-invalidate protocols provides weak consistency memory model on

copies of paragraph. The weak consistency memory model is different from the strict

consistent memory model in that it does not guarantee memory coherency without the use of

explicit high-level synchronization operations. Parallel programs, therefore, would need to

impose an ordering on accesses to shared memory by using synchronization operations. This

protocol treats shared memory accesses differently from synchronization variable accesses.

The model supports two types of synchronization accesses: acquire and release. Similar to the

software release consistent protocol used in [8], release-update protocol ensures that all

previously modified data is updated before the release is performed on a synchronization

variable. Similar to the entry consistent protocol used in [10], entry-invalidate protocol

ensures that a consistent copy of paragraphs are pre-fetched when the acquire or entry of a

synchronization variable is performed.

DICE DSM is similar to Munin[8] system, since both of them use multiple type-specific

coherency protocols. However, the kinds of protocol support and their designs are different



between them. More significant difference between them are the memory structure and

granularity. DICE DSM uses fixed-sized paragraph flat memory space, while Munin uses

variable-size object structure memory space. The advantage of using fixed-sized paragraph

is that it allows the DSM to be implemented in hardware like MemNet [11]. This will improve

the performance significantly, and is the final prototype of DICE DSM.

DICE separates synchronization mechanism from shared memory. It supports two kinds of

synchronization variables locks and barriers. Whereas locks are used primarily for access

control, that is, to resolve competition among parallel threads, barriers are used for sequence

control, that is, to ensure correct timing among cooperating threads. Other kinds of

synchronization variables can be built on top of them. DICE uses distributed queueing

schemes for both lock and barrier synchronization protocols.

4. Parallel Scheduler

DICE PS is a self optimizing application specific scheduler. It is responsible for thread

scheduling and synchronization. The PS is implemented as a thread within the parallel task.

Each parallel task has one PS running on the workstation where the task initially start to run.

This special thread is created during application load-time.

When an application needs to create another thread or to terminate itself by joining with

other threads, it passes control of the execution to the PS. The PS will find the fastest way to

run the application by using the information in the task execution dependence tree, which is

created as an auxiliary file during the compiling of the source program.

The PS decides whether the local workstation has enough resources to run the different

threads, which threads to send to remote workstations to run, and which remote workstations

to send them to. It uses several tools to make intelligent decisions at run time. Those tools

are: CPU load estimator, network load estimator, an intelligent database, and the bidding

process.

The CPU load estimator runs on every workstation on the network and keeps track of the

load on that workstation. The network load estimator monitors the traffic on the network,

and helps the parallel scheduler in avoiding heavily loaded networks. A small and efficient

database records thread performance on each workstations under different CPU and

network load conditions. This database helps the bidding process by giving the workstations a

reasonable estimate of the expected run times of various threads.

When the parallel scheduler decides that it is best to send some threads to a remote

workstation to run, it needs a way to pick those workstations. Instead of forcing other,



possiblyheavily loaded,workstationsto take someof the threads,the parallel schedulerasks

for helpthrough the bidding process.It simplyasksfor help in running agiventhread andtells

the other workstations about the memory and CPU requirements of the thread. This

information is found in the intelligent database.The detail design of PS is based on our

previous work [12].

5. Distributed Run-Time Subsystem

DRS transforms the DICE DSM from a fiat space into an object-oriented structured space.

DICE DRS consists of a set of tools that implement the DICE. Application Programmer's

Interface, API, provides users with programming tools to develop and execute DICE

multi-threaded applications. The tools used during program development include a parallel

language and its compiler, library interface functions, and a linker.

A new Object-Oriented Dataflow language(OODL) will be designed used as the parallel

language used in DICE. One of the important features of object-oriented programming is

information hiding and encapsulation [13,14]. It provides a higher level of data abstraction in

modeling real world objects. Such concepts are helpful in designing parallel programs [ 13]. In

general, parallel programs are difficult to design because the programmer must consider

multiple execution threads instead of a single thread. All possible interactions among the

threads must be considered. Also, parallel programs are hard to maintain because a simple

change may affect the interaction pattern and result in global consequences. Information

hiding helps in reducing possible interactions that need to be considered, while data

encapsulation help in minimizing the maintenance effort when program changes are needed.

While the object-oriented model provides a high level of programming abstraction, it does

not naturally exploit parallelism of applications constructed with objects. A dataflow model

can expose and exploit the maximum amount of parallelism, as well as express data

dependence from different levels of abstraction in a very natural way. The combination of the

object oriented and datafiow concepts makes it easier for programmers to design large scale

multi-threaded parallel programs, and to build re-usable concurrent software modules.

The OODL language, in DICE, will be an extension of the object-oriented programming

language C + +. Dataflow constructs will be added to allow programmers to express

parallelism explicitly. The parallel compiler can be realized using a preprocessor to translate

the extended source code into C + + programs, which in turn are compiled into object code

using an existing C + + compiler.

The run-time library interface functions provide a collection of library routines that are

linked with each parallel program. They are invoked to support the service requests made by



systemprocessesat run-time. The OODL compiler will use these functions to realize the

parallelism expressedin the application programs. Thesefunctions canalso be usedby the

application directly.

6. Conclusions

The key results accomplished in this project include:

1. A design of a distributed shared memory system for distributed networked computing that

solves the problem of false-sharing. The DSM employs a two-tier paging scheme and a

set of management protocols and algorithms suitable for hardware support within the
architecture of a workstation.

2. The DSM scheme was evaluated analytically. The results verify the validity of benefit of

the two-tier paging scheme in solving the problem of false-sharing.

3. The DSM was alo simulated using the Block Oriented Network Simulator, BONES, and

was driven by a trace from a scientific application chosen from the Stanford's SPLASH

benchmarks. The results of the simulation confirmed the results of the analytical work

and also verified the utility of the use of the two-tier paging schem.

The papers attached to this summary report contain further details of the work performed

under this project.



References

1. K. Li, "IVY: A Shared Virtual Memory System for Parallel Computing," In

Proceeedings of the 1988 International Conference on Parallel Processing, pp. 94-101,

August 1988.

2 A. Forin, J. Barrera, and R. Sanzi, "The Shared Memory Server," Proceedings 1989

Winter USENIX Technical Conference, Februray, 1989, pp. 229-244.

3. A. Forin, J. Barrera, and R. Sanzi, Design, Implementation, and Performance

Evaluationof A Distributed Shared Memory Server for Mach, Technical Report

CMU-CS-88-165, Carneigie-Mellon University, Computer Science Department,

August, 1988.

4. R.G. Minnich and D. J. Farber, 'q'he Mether System: A Distributed Shared Memory

for SunOS 4.0," In Useunix -Summer 89, Usenix, 1989.

5 R.G. Minnich and D. J. Farber, "Reducing Host Load, Network Load, and Latency in

a Distributed Shared Memory," Proceedings of the lOth International Conference on

Distributed Computing Systems, Paris, France, June 1990.

6. U. Ramachandran, M. Ahamad, and M. Khalida, "Unifying Synchronization and Data

Transfer in Maintaining Coherence of Distributed Shared Memory," Proceeedings of

the 1989 International Conference on Parallel Processing, pp. 160-169, August 1989.

7. B.D. Fleisch, G. J. Popek, "Mirage: A Coherent Distributed Shared Memory

Design," Proceedings of the 12th ACM Symposium on Operating System Principles,

December 1989, pp. 211-222.

8. J.B. Carter, J. K. Bennett, and W. Zwaenepoel, "Implementation and Performance of

Munin," The 13th ACM Symposium on Operating Systems Principles, October 1990,

pp. 152-164.

9. M. Stumm, and S. Zhou, "Algorithms Implementing Distributed Shared Memory,"

IEEE Computer, Vol 23, No. 5, May 1990, pp. 54-64.

10. B. N. Bershad, M. J. Zekauskas, Midway: Shared Memory Parallel Programming

with Entry Consistency for Distributed Memory Multiprocessors, Technical Report

CMU-CS-91-170, Carneig-Mellon Univeristy, September 1991.

11. G. S. Delp, The Architecture and Implementation of MemNet: A High Speed

Shared-Memory Compute Communication Network. Ph.D. Thesis, University of

Delaware, Department of Electrical Engineering, Newark, DE, May 1988.

12. H. Arafeh and H. S. AlKhatib, and H. Barraclough, "MOPPS: A Scheme for

Managing Parallel Scientific Programs in a Distributed Architecture," Proceedings of

COMPCON'90, the Annual International Computer Conference of the IEEE

Computer Society, February 25 - March 2, 1990, San Francisco, CA, pp 387-395.

13. B. Cox, Object Oriented Programming - An Evolutionary Approach,

Addison-Wesley, 1986.



14. B. Stroustrup, "What is "Object Oriented Programming"?," IEEE Software, Vol 5,

No. 3, May 1988, pp. 10-20.

15. Y. Wu, T. G. Lewis, "Parallelism Encapsulation in C+ +," In Proceeedings of the

1990 International Conference on Parallel Processing, pp. 35-42, 1990.



H

Proceedings of the ISCA

International Conference

PARALLEL AND DISTRIBUTED COMPUTING

SYSTEMS

Los Vegas, Nevada U.S.A.
October 6-8, 1994

A PubUcatlon of

The International Society for

Computers and Their AppUcatlons - ISCA

ISBN: 1-880843-09-9



Coherency Protocol and Algorithm of The DICE Distributed Shared Memory

Chi-diunn Jou, Hasan S. AIKhatib, Qiang Li, and Alien Tiekun Chen

Abstract

DICE (Dismbuted Integrated Computing Environment)

DSM (Distributed Shared Memory) is an experimental sys-
tem, being developed at Santa Clara University, which sup-

ports the execution of multiple threads on a cluster of net-

worked workstations. This paper presents the coherency
protocol and algorithm of DICE DSM, which is a novel ap-

proach to the design of the virtuad-memory based DSM. In

DICE DSM, the shared memory uses a two-der paging sys-

term The first tier, page, is the common page used in an over-
ating system, The second tier is called aparagraph, which is a

smaller fixed-sized unit of memory contained within a page.
The introduction of paragraphsimproves system performanc¢

by reducingtheprobabilityoffalsesharingaswellas the size
of the unitof informationtransferredover the network for

maintenanc_ofmemory coherency.

Keywords: coherency protocol and algorithm,distrib-

umd shared memory, Meal area network.

1. Introduction

Computer Engineering Department

Santa Clara University

Santa Clara, CA 95053

in which the system g,uarantees that the writer of a page retains

accesstoapage fora fixedperiodoftime.Munin {2]handlesit

by using multiple consistency protocols and software release

consistency. Mether [d] reduces false sharing and thrashing

through the use of the incoherent memory.
DIC_ (Distributed Integrated Computing Environ-

mcnt)[I] presents a novel approach to handle the problem of

false sharing and thrashing. The shared memory is structured
as a two-tier paging system. The first tier, called page, is the

page commonly used inan operatingsystem. The second tier

is called a paragraph, which is a smaller fixed-sized block of
memory within a page. Paragraph is the coherency unit. The

introductionofparagraphsimproves system performance by

reducingtheprobabilityoffalseshanng aswellasthesizeof
the unit of information transferred over the network for main-

tenance of memory coherency.
An overview of the DICE DSM architecture is given in

section 2. Section 3 presents the memory coherency protocol.

The algorithm for realizing the complete DSM protocol is

presented in section J,. Section 5 discusses the expected sys-
tem performance and concludes.

A DistributedShared Memory (DSM) system supports

thesharingofa virtualaddressspaceamong processesrun-

ningon loosely-coupledprocessors.A number ofDSM sys-

tems over LA.Ns have been developed [Sl. Among them, Ivy
[5]isimplemented on anetwork ofApolloworkstations.The

memory ispaged,and copiesofpages may be replicatedin

different hosts. Strict coherency semantics arc used,and the

memory coherency is maintained by a write-invalidate with
dynamic ownership protocol. The owner of a page is locamd

via either a centralized manager, fixed distributed managers,

or an individual host which forwards the re.quest. Ivy is used
for applications employing muld_ed tasks. All threads

share the same virtual address space. False sharing may occur

in this system, since its consistency or access unit (e.g. word)
is less than the sharing unit (page). In addition, the single-

write nature of its protocol may cause a "ping-pong" behavior
between multiple writers of a shared page.

To overcome false-sharing and thrashing, some systems
employ special schemes. Clouds [7] avoids them by using a

single-writer-single-reader strict coherence semantics. Mi-

rage [3] reduces thrashing is by using a dine window scheme,

"This work was rapported by NASA-Am_ Rttte,are..hCe.nter grant,=
amber NCC 2-644 entitled "Parallel Pmcc_ing for Scientific Corn-

potations".

2. The DICE DSM Architecture

DICE is an experimental distributed computing sysmm
which aims at providing a computing _avironmcnt for tha ex-
ecution of multi--s.hreadcd tasks. A paralI¢t task may consist

of multiple threads that can tm scheduled to run on a cluster of
workstations simultaneously. A thread is an active program

,ndty that provides the notion of a computation. Threads on
separate workstations also share the same virtual addxess

space.,and communicate with each other using shared

memory. Synchronizationof threadsaccessingshared re-

sourcesisdone using_nctionsprovidedby adistributedrun-

time library.

FigureIshows t.hesystem structureofDIC'_. Itconsists

of threeinteractivesubsystems. DRS (dismbute.drun-dine

subsystem)providesuserswithprogramming toolstodevelop

and execute DICE multi--dar*aded applications. DSM (dis-
tributed shared memory) provides r.he underlying communi-

cation and computing paradigm for threads of a parallel task.

PS (parallel scheduler) is a self-.-optirnizing application-spe-
cific scheduler, and is responsible for thread scheduling and

synchronization.
In addition to a host processor and memory, each nod_ in

DICE also has a network processor and a Disrribated Shared

Memory Management Unit (DSMMU), DSMMU is an exten-
sion of the traditional MMU which supports paragraph valida-

1

796

.I_ _ t"
%r.



wor Jr_tat)on [

FS i DSM

OS

f "['hrc=_

DR3

?S ' DSM
I

O$

tow- L_um¢_ tAN

_)r_3tat ioq i1

_J DSM

05

Rip=re I. S)_e.m A_cl_itcaure of DICE

tion/invalidationto achieve efficientmanagement of the

DSM. When data isaot availablelocallyand needs tobe

fetchedfrom aremotehost,theDSMMU triggersaspecialac-

cess fault,otherwise,the DSMMU performs the traditional

TLB operations.

3. Coherency Protocol

In DIC=_ a parallel task consists of multiple threads that

run on a cluster of workstations (hosts), simultaneously.

Shared data can be distributed and replicated on the physical

memory of the members of a cluster. The DSM system sup-
ports the sharing of virtual pages, and maintains coherency

among replicamddatacopiesacrossthenetwork. A parallel
task has a root host, on which it was first loaded and executed.

The root host. maintains the stare information for all shared
pagesused by thetask.Otherhostsinthe clustermaintainthe

siam informationfor the sharedpages thatarc currentlyin
theirlocalphysicalmemories.

In DICE each shared page of a parallel task has a home

hast. A home host maintains the seam information for its

pages, and ensures that the last copy of a page is not purged,

and keeps track of all copies of the paragraphs of its pages.
Other hosts in the cluster that have a copy of a page keep a
pointer of the home host. When a thread makes an attempt to

access a page for which it doe.s not have a copy, it communi-
cates with the home laost of the respective page in order to
complete the memory access transaction. When a host does

not know the home host for a certain page, a home-.info fault
will be mggered and a home--info request will be sent to the
root host. The root host replies with the information about the

home host for the requested page. If the home host is apt yet

assigned, the root host will assign the first requesting host as
the home host for the requested page. The root host will then

update its database and send to the requesting host a reply in-
forming this assignment.

The memory coherency of DICE DSM is maintained on

the paragraph level. A paragraph can simultaneously be read
by multiple hosts, but it can only be writmn by one host at a

time. Access rights to a paragraph can be read-wine, mad-
only, or none. An owner host is the most recent host that have

read-write access to that paragraph. The ownership of a para-

graph may be transferred from one host to another. There is

no ownership when two or more hosts have read--only access

rights to that paragraph. The Information about the ownership

era paragraph is maintained at the home host of the page con-
taming the paragraph.

When a readoperationisissuedtoa paragraphbya host

with none rights,a mad-data faultwillbe triggeredand a

read--datarequestwillbe senttotheparagraph'shome host.

When a write operation is issued to a paragraph by a host with

none right, a write-data fault will be triggered and a write-da-
ta request will be sent to the paragraph's home host. When a

wrim operation is issued to a paragraph by a host with read-

only access right, a write-access fault will be triggered and a

write-access request will be sent to the paragraph's home
host. In each case the home host directly or indirecdy re-

spends with the requested information.
At initialization, a home host is the default owner host for

all paragraphs within its respective pages. Any other host will
send a remote request to the home host when it tries to access a

paragraph of this page. If a read-dam request is received, the

home host will return a reply containing the most recent copy
of the desired paragraph when it is the owner host or there is no

owner host of that paragraph. The access rights of both home

and requesting hosts arc changed to read--only. If the home
host is not the owner host. it will forward this read-dam re-

quest to the owner host of that paragraph. The latter changes

its access right to read-=only, and then sends to both home and
requesting hosts a reply containing the most rec_nt copy of

that paragraph. After it receives the reply, both home and re-
questing hosts changes their access right to mad-only. Home

host will also reset the owner host of that paragraph to none. If

it is the requesting host. the home host will directly send the
mad--data request to the owner host. The latter chang_ its ac-

cess right to mad--only, and then sends back a reply which con-

rains the most recent copy of that paragraph. Having received

this reply, the home host changes its access right to read-only
and resets the owner host of that paragraph to none.

If a write-data request is received, the home host will re-

turn a reply contmning the most recent copy of the desired

paragraph if it is the owner of this paragraph. If multiple valid
copies exist, the home host will send invalidate requests to all

hosts holding the copies, and wait for confirmations from all
of them before returning the reply. Upon receiving the invali-

date request, each host changes its access right of that para-

graph to none and returns its confirmation to the home host.
The access tight of the home host is then changed to none,

while the requesting host becomes the owner host and its ac-

teas right is changed to read-write. If the home host isnot the
owner host. it will forward this write-data request to the own-

er host of that paragraph. The latter changes its access right to

nora, and then direcdy sends to the requesting host a reply

containing the most recent copy of that paragraph. After re-
ceiving the reply, the requesting host changes its access right

to read-write and sends a confirmation message to the home

797



|

host. Having received this confirmation message, the home

host updates its database and records that the requesting host
becomes the owner host of that paragraph. If the homo host is

the requesting host, it will directly send the write-<fatarequest
to the owner host. The latter changes its access right to none,

and then sends back a reply which contains the most recent

copy of that paragraph. Having received this reply, the home
host changms its access right to read-write and becomes the

owner host of that paragraph.
If a write-access request is received, the home host will

return the write--access confirmation when it is the owner of

that paragraph. If muldple valid copies exist, the home host

will send invalidate requests to all hosts (except the request-
ing one) holding the copies, and wait for confirmations from

all of them before returning the confirmation message. Upon
receiving the invalidate request, each host changes its access

tight of that i_at'agraph to none and returns its confirmation to

the home hosL The access right of the home host is then

changed to none, while the requesting host becomes the owner
host and its access right is changed to read-write. If the home

host is the requesting host, it will directly send the invalidate

requests to all hosts (except the requesting one) holding the
copies and wait for confirmations from all of them. Upon re-

ceiving the /nva//date request, each host changes its access
fight to none and returns its confirmation to the home host.

The home host then changes its access right to read-write and
becomes the owner host of that paragraph.

Figure 2 shows the seam diagram representing the loca-

tion of a valid paragraph. This state diagram reflects the pro-
total described above. At any dine, the location state era val-

id paragraph is either none. at home host, at owner host, or at

multiple hosts. The state is initially set to none when a home

rt_ mm_t--_attm

w.te--,ttm

wt_m--m

tJest

r_

,_1 o¢ w_J f_ut/rst_lt_
(o. r_s-.or_ msstt

C--_ar_ 2. State ol_ mr me toe.tram od a w_t_l _

host has not yet been assigned. A home-b)/a fault and request

made by any host forces the root host to assign the requesting
host to become the home host. The state is then changed to at

home host. in this case the home host is the owner of the para-

graph.
A. paragraph will leave the at home host state when either

read--4ata or a write-data fault occurs. A read-data fauit

and request at any non-home host causes the paragraph to

transit to the at multipte hosts state. In this case there is no

owner host and multiple hosts have valid copies ( with mad_

onty access tights) of the paragraph. Note that these multipte
hosts always include the home host. A write--data fault and

request causes the paragraph to transit to the at owner host
state, where the requesting host becomes the owner host of the

paragraph.
The paragraph will leave the at multiple hosts state when

either a writ_--access or a write-data fault occurs. A write-

access or a write--data fault and request at any other non-

home host causes the paragraph to transit to the at owner he.re
state. A write-access fault and request at the home host

causes the paragraph to transit co the at home host state. A
mad--data fault and request at any other non-home host wiI1

sdlI ke_p the paragraph in the at multiple haas stare. Note that
a mad-data or a write-data fault will never occur at the home

host; since a home host has a valid copy of the paragraph (with

mad-only access rights) in the at multipte hosts seam.

- The paragraph may leave the at owner hosrstam when ei-
ther _ mad--data or a write-data fault occurs. A read-da_

fault and request at any other host cause, s the paragraph to
transit to the at multil)te hosts st,am. A )vrite--dara fault and

re,qtmsr arthe home host cause, s the paragraph to transit to the
athome host state. A write-data fault and request at any other

non-home host causes a change of ownership, but the para-

graph will still be in the at owner host state.

4. _Coherency Algorithm

To support the above protocol, a Page rabl_ (PT) and a

paragraph table (ParT) are used to maintain the state infor-
mation about shared pages and paragraphs. Each DICE appli-
cation maintains its own set of these tables. In addition to the

address mapping information and flags, PT also maintains the
information about the location of home host of each shared

page. This location information is denoted by the home hen
identffier or hid. ParTmaintains the information about the ac-

ctms fights to each paragraphs (act). The Part of the home
host also maintains the location of the owner host of a para-

graph (o/a), and the set of hosts (excluding the home host)

which have mad-only copies of the paragraph (co_ryset).

The coherency algorithm handles various kinds of para-
graph validation faults as described in section 3. These faults

include home--in/o, read--data, write-data, and wrim--access
faults. We divide the algorithm into four parts, corresponding

to the four fault types. Each part of this algorithm consists of a
fault handler and its server, as illustrated in Figures 3 to 6 for

the rx:specdve fault type. Nora that p and g, which are used

798

÷.

I Ill " ' '



within the algorithm, denote the current page and para=_-aph
numbers, respectively.

home--.mfo fmdl ha_mle_.
s_ h_rN_,_o requesl to root

aroate a _]" ra¢ _

IF ( hame-a_ confwmiuon ,i= r_l
SEC_e

FOR D_z;inlon i in 000

P'ur_]._. O;
;:vTTr].abcc = rela-wmr,

_NO 0(3:.
ENO

PT_oJ.h/d - me _ed home host:
FOR pllcjra(:_1 i ;n o DO

ENO 0(3;.
ENO

r_m_.

hame-- m/o fault

IF (p ul riot yll alliqllld _Itl i florae holt)

p" "rmne" _ - > *at _ _ sUue -!
_IJ_d - nmu==_
cmem a i_eT for p
t=OR _iin O 00

t=_'rl't].a¢=.

EN_

ELSE P "_ _ ho_ st=e - _ m ¢_nqa "t
s*ne tmme-_ nm_f to r_mm=_ nee:

mlun_

F'_um =. _he _mmm _ mm_r,;I nome-_o U

5- Discussions and Conclusions

We have pre.sented the memory coherency protocol and

algorithm of DICE DSM. The coherency protocol for this
cwo-_er paging system is now being simulated in software.
The performanc_ of DICE DSM system has been studied us-

ing an analytical model [4],which derivesan expressionfor

the speedup of the parallel parr of an application (or S_ ). In
dais analysis, a high-speed and low-;ateney ATM _ is cho-

sen as the underline platform, and the queuing time on the net-

work is assumed to be negligible.. The memory access unit is

assumed to be four bytes (or one word). Each page has P bytes

and k paragraphs per page. An application is executed by N
hosts, and uses M bytes of shared memory space. The behav-

ior of an application is represented by the percentage of data
memory accesses for total instructions (denoted by d); the

probabilities of read and write faults (denoted by N<and N,¢,,

which are the number of mad faults and write faults per
1.000,000 memory references per host); temporal locality
(denoted by :c,, which is the number of times that the same

paragraphs accessed continuously by a host); and spatial
Iocality factor (denoted by x,, which is the probability of a

certain region of shared memory being _ by a specific

host). The temporal locality x, is further represented by a

st_p uniform distribution(withparametersN0, Nt, and g,

which am thestartingpointer,endingpointer,and window siz-

Read data t_mWrnpn fault hill(_ltr:.
IF (I am home r_ost)

BEGIN _r to -_ ow_,_¢ _ suue - > ",'_ muJ#_ t_o'.'_"" sssta "t
read_dam ¢_:luest to Pw'F[gJ.o_t:

mcmve m_O d&=a re1_Wtrom PwT'[gJ.m_:
la_rT_gj._0oys_t ,= (P_l"_gJ.=¢l};
P'=rl"[g|.o_l • none:

E_O
ELSE

BE'_IN
read _a,= result to FTTOI.hid:

rer.,_we re_l c_ata realy from owner nest:
ENO:

uo_am _ co_y o( _1;
r,_wT'[gJ.a¢C = relcl--on_y;
unalotk heat

_ (I .m_ home no,_)

IF (no _ _OS¢)
BEG4N

s_md m_l d_ _ m r_mummml I_osl:

EN0

ElSE IF {I arn owner rm_-11
_EGIN /" "at home no=_" s=_ -::,= "it mu_e no==" m °!

P_rT_gl.a_ - _a-_n_.
sen_ m=(:l _=a re=_f to requesmq
?'=rT[gJ.¢oOysst = (mqt.,_mng ho_t};
t:_atl"[gJ.oid, non_.

5NO
EI._E p' _'ho=t m not me "1

BEGIN p "at _ no=" _- >-'_t_ _" s_am °I

P_T_gj.a_ = r=*"..-_,
P_T'LgJ.¢omr'_t - {P='_(gl-_ _t':
_m(gl.om -

E_O

BEGIN

iF (r_r,_nrm heat _ hem= ho_

_ m__a=m ml_, to hem* ho_'
ELSE

E_IO

• of this step), which approximates the bell-like normal dis-
_bution reflecting intuition that the chauc._ of a memory

location being acc=.ssed by a host decreases as the distance
grows from the previously accessed location.

The effects of changing S_ on system structm_ and

application behavior has been studied, and some of these re-

sults are shown below. Figure 7 shows that the =_ainin S_ be-
comes smaller and smaller as the network dam rate R, in-

creases. "Thismay justifythe above assumption that the

queuing time on the network isnegligibleinhigh-speedand

low=4amncy network. Figure $ shows thatS_ dmn'easesas

processor speed R_ increases. Note that the total execution

time for an application will still be reduced asR, in_,

althoug_ S, decreases.

Hgur_9 shows that S_ increases as the nurnberofpara=
graphs pea"page, k. increases up to a certain point. After that

point. S_, slighdy decreases as k furdaer increases. Further-

799



Wrttl alf.I gW'lgraan hmgl t_me,_(_r:
J.=_ am norn_ nasz)

_EG]N _ "_)towr)e¢ host" slalo - > %).)home nos/" _;_1¢m"/

sena _w_u) oma rm_Je,_ to P_gJ.ow:l:
rllc4m_ writ# Clit_llfeOfy |rocn P_tT_gJ.o_I:
Pam(gl.o_ - m,fs4_.

_NO
ELSE

s4mo wnm daca reouem to FTT_I.h,O:

u_e Ioca/cooy ol g;

t4-_lw_c tvalc a_clllm_,

_P 0 im rmc I'_ne no_ ancl r_b, _ nol _r_m P_lj_ _
slncl write a_l _fm_n _o/_T_|.l_cl:

JF (I am r_ r_

BEGIN P "at rruCm_ horns° strum - > "a( owrw nos_ stw_ o!

mnc_ _ _ to J hosts m Pwl"(gl.cowse_
_(oc_ I=mCmm_ I%mxe n)o.msts f_. g:
re_vm ,_MI_vm,0aOon comlm.m_:
hCTlgbacc, r_,e:

sm_ w,_ aam re_/co m(x)am_ nose
),_gl.c=wsm = 0:
_r_gl.m_ - m_u_ n_m

_.gE ;F 0 wn om_- rxsm

8EG;N /" "a_home nc_" m -> "a/c_m. _ m "!
_)mTT_l.acc-
sm_ _u) daua racy to ra_Jamng hose
_'r{gl.o,cl .. _m.ma_q rmc

_0
_L.q_ ,_"ore'm" rx_ _s nm rrm .!

BEGIN /)'_ mm_ nos_ m-.m _-!

r)c_m wmmj:ma conk_mmon 1ram nmumm_ )z_:
I_rT_gJ.a,d. _

'dn_aclc _o_slmq Uunl _ for _

Pm'l"[g J._.

IENO

more.. S_ is approximam[y the same for a fixed paragraph

size,,which is P/k. This behavior demonstrates usc_Iness of

the use of a paragraph with a smaller granularity than a page.

l_gurc 10 shows a similar behavior, for S_ i. rcianonship
with thenumber ofhostsN.

The analysisof thisperformancemodel demons_ams the

effectofusingparagraphwhich hasa smallergranularitythan

a page. TI_s smaller&oranulariP/ reduc_ the probabilityof
falsesharingand theamount ofdam tobe transfer_dover the

network. The perforrnanccof DICE DSM isalsogoingtobe

evaluatedby a L,'ac,'--drivensimulationmodel, which will

take considerationof network queuingdelayand give morn
realistic results,

The concept of usingparagraph is differentfrom thatof

us/rigc_he Hn¢ or from theonesjustusingsmalll_ge size,.

C,ach_..-based DSM has been used in multip_r sysmms,
which nce_Is to build theirown interconnecu_l network inmr-

face and use their own me_sag_-..bas_communication

HII/I{Ill wfttl--I¢lll _llrlqril_tl |IUR:

send _am_ r_Ja_ to a_ _ _ P_'T(gJ.coi_yset;

P_rfgl.co.y_ = (}:

E.L_:
BEGIN -:_

F.NO:

WMte I(:¢mm gm_illon fm_lt _m:.
P "al rnu_ nos_" _m - • "_t _ nosr state "!

s_m¢lima_mon _luel_ lo d nosut ((mcao_ reauu'u_ nos_) _ P_,r[gl.c_ys_:

¢ The _nmm Im ml_linq w_e_eces_ p_"_q_ multz

scheme. Incontrast,paragraph-basedorpage--basedDSIV[_=

used thesysmms overLA_s, usingtheexistingne_ork inu_

facewithstandardpacket-basedorcell-based networkcor_

municadon protocols.As compared with small page
paragraph reduces the complexity of the shared memory man

agcmentduo totheuse ofsmallsiz_ofpage table and the r_o_
layeredhicrarci'ncal page/paragraphs_'ucmre while allow_nl

a hosttocontinueusingthelargersizeof page astheu_nds:_

cur_nt memory demgn m umprocessor computer systcm=__

This r_ucuon of compiexaty _s also due to the using ot hom__
hosts in the protocol, which allows easily to Iocat_ the desiz_
memory unitwhile dismbudng the management of

memory over the hosts on a I_AN. ,._

References : :

[I] H.S.AiKha_ib,Q. Li,C 3ou,2".Chen, and H. Arat'eR

"DIC_ - A DistributedInu:grat_dComputing

ment forMulti-ThreadedParallelProcessing,"toba

appearedin flaeProceedings of lmernational Confer-

ence on System Integration, August 15--19, 1994, See

Faulo, Brawl.

[2] J. B. Carter, J. E. Bennett, and W. Zwaenepoct,
rnentadon and Performance of Munin," The 13_

Symposium on Operating Systems Principles, October : .'_

1990, pp. 152-164.
7_

[3] rL D. Fleisch, G. I. Popek, "Mirage: A Coherent DIS-

tributed Shared Memory Design," Proceedings af'J'_ :_/_

12th A CM Symposium on Operating System Princ_. te._

December 1989, pp. 211-222. ._
[4] C. Jou, H. S. AIKhatib, and Q. Li, Perforrnanc= A_naiy--_

sis of DICE Distribut_ Shared Memory System, Dis--_
:-._t

8OO PAil



! I 6

o ar pa ) k(#ofpara/page)

Figure 7. Sp vs k for different Rn. N=I6, Rp=50Mips,
M=64kbytc.s, P--,tkby_¢=, d=0.4, Nrf=500,

Nwf=[0, Xs=0.5, NO=t0, NI=100, _=t00.

----..,-_B,,,_--- Ism_$ I _mt

F/gum 8.Sp vsk for_ffcr_nt Rp. N=16,P,n=150Mbps,

M=d4kbytes, P--,Ckbyms,d=0.4,Nr/'=500,

Nwf---[0,Xs=0.S, N0=I0. NI=I00, g=100.

Ol_li_tllqil

O

k (# of para / page)

Figure 9. Sp vs k fordifferentP.N=I6, Rn= 150Mbps,

Rp=50Mips, M=S4kbyt_, d--0.¢,.l_'f=-500,

Nwf=10, X.s.._.5,NO--10,NI=I00, g=100.

8 I "-'='41-'- _'_

|-----=---.,,

I-"'--'"

_Q

N (#of hosts)

F_gltr_I0.Sp vs N fordifferentk.Rn=lSOMbps, d-._.4,

Rp=_0Mips.M=d4kby_,P'-___,
_rf=500,Nwf=i0, _0=_0,t_=10O,_=i00.

¢ibumd Computing Lab TechnicalRepor_No.

03231994, SantoClaraUniversity,1994.

[5] ICLA "IVY':A SharedV'wuml Memory Sysmm forPar-

zIlct Computing," In Proceedings of _e 1988 [r,_rna-

_ono_ Conferenceon ParaLlelProcessing,pp.94-101,

August 1988.

[61 IL G. Minnich and D.I. Fro'bet,"Reducin_ Hos_ Loa_L

Net'workLoad, and Lamncy ina DistributedShared

Memory," Proceedings of the l Oth /m_rnzzri.onzd Con-

ferenceon DistributedComparing Systems,Paris,

France,lunc 1990.

[7] U'. Ramachaadran, M. Abamad, and M. Kha.Hda, "Uni-
b/inK Synchronization and Dam Transfer in Maintain-

ing Cohm-enc_ofDismbuted SharedMemory, " Pro.-

ceedings of the 1989 Interna:ional Conference on
Parallel Processing, pp. 160-169, August 1989.

[8] NL Tam, I.M. Smith. and D..l'.Faxbex,_A Taxonomy-

Based Comparison of Several Distributed Shared

Memory Systems,'" A CM OperatingSystem R_view,

VoL 2¢,No. 3,July 1990,pp.40--67.

801



A Two--Tier Paging Scheme for Network-based Distributed Shared Memory Systems

Chi--diunn dou, Hasan S. AIKhatib, and Oiang Li

Abstract - Distributed computing over a network of workstations continues to be an illusive goal. Its

main obstacle is the delay penalty due to network protocol and OS overhead. We present in this paper a low

level hardware supported scheme for managing distributed shared memory (DSM), as an underlying paradigm

for distributed computing. The proposed DSM is novel in that it employs a two-tier paging scheme that re-

duces the probability of false sharing and facilitates an efficient hardware implementation. The scheme em-

ploys a standard OS page and divides it into fixed smaller memory units called paragraphs, similar to cache

lines.

An application address space is viewed as consisting of a shared data region, an unshared data region, a

stack region and a code region. Code, stack and unshared data regions are handled by the OS in the standard

manner without modification. The proposed scheme manages the shared data regions only. A hardware exten-

sion of a traditional MMU, Distributed MMU or DMMU, is introduced to support the DSM. Shared memory

coherency is maintained through a write-invalidate protocol. An analytical model is built to evaluate the sys-

tem sensitivity to various parameters and to assess its performance.

Keywords - distributed shared memory; false sharing; hardware support for distributed computing;

memory coherency protocol; performance evaluation; networks of workstations.

1. Introduction

Despite the tremendous progress made in local area networking over the past decade and a half, the

operating system and network protocol technologies have yet to address the main obstacle to distributed

computing, namely the delay due to the network overhead. Network speed has reached several

hundreds of Mbps, but the real issue is the network overhead latency in addition to sustained through-

put.

*This work was supported by NASA-Ames Research Center gants number NCC 2--644 entitled "Parallel Processing for

Scientific Computations".



The problem consists of a myriad of sub-problems, and is not simple to resolve. It requires a system-wide

consideration on the full integration of networks into the operating system, and a re--examination of network

protocols and the overall system architecture, including hardware support for both network protocols and the

OS. This integrated view is underway in a project at Santa Clara University, called DICE, a Distributed Inte-

grated Computing Environment [1 ]. DICE supports a distributed shared memory paradigm, DSM. This paper

presents the design and performance of DICE DSM.

A number of DSM systems based on LANs have been developed over the past decade[18]. Among them,

Ivy [ 13] is implemented on a network of Apollo workstations. The memory is paged, and copies of pages may

be replicated in different hosts. A multiple-readers and-single writer strict coherency semantics is used on the

page level. Memory coherency is maintained via a dynamic ownership protocol with a write-invalidate proce-

dure. The owner of a page is located using either a centralized manager, a group of fixed distributed managers,

or the individual host which forwards the request. Ivy is designed for multi-threaded applications. All threads

share the same virtual address space. False sharing may occur in this system, since its consistency or access

unit (e.g. word) is less than the sharing unit (page). In addition, the single-writer nature of its protocol may

cause a "ping-pong" behavior between multiple writers of a shared page, leading to thrashing.

The problems of false-sharing and thrashing have been addressed by other DSM systems. Clouds [15]

avoids them by using a single-writer-single-reader strict coherence semantics introducing instead significant

blocking delays. Mirage [9] reduces thrashing by using a time window scheme, in which the system guaran-

tees that the writer of a page retains access to a page for a fixed period of time, suffering again from blocking

delays. Munin [3] handles it by using multiple consistency protocols and software release consistency, hence

placing the burden on the user. Mether [14] eliminates false sharing and thrashing by ignoring memory coher-

ency altogether, leaving its burden to the application software.

DICE represents a novel approach to handling the problem of false sharing and thrashing. The shared por-



tionof memoryisstructuredasatwo-tier pagingsystem.Thefirst tier is anormalpage, and the second is

called aparagraph, which is a smaller fixed-size block of memory within a page. Coherency is maintained at

the level of a paragraph. The introduction of paragraphs improves system performance by reducing the proba-

bility of false sharing as well as the size of the unit of information transferred over the network for maintenance

of memory coherency. A Distributed Memory Management Unit, DMMU, an extension of the tradition-

al MMU, is designed to support the paragraph validation, and a special network controller is used to

support the accesses to the remote memory and the maintenance of memory coherence.

Section 2 of this paper gives the overview of the DICE architecture. The design of the DICE distributed

shared memory is described in section 3. An analytical model and the expected system performance are pre-

sented and discussed in section 4. Section 5 concludes this work and compares it to other approaches.

2. Overview of the DICE Architecture

DICE is an experimental distributed environment for executing multi-threaded tasks. A parallel task may

consist of multiple threads that can be scheduled to run simultaneously on a cluster of workstations. Threads

executing on separate workstations share the same virtual address space, and communicate with each other

using shared memory. Synchronization of threads accessing shared resources is done using functions provided

by a distributed run-time library.

DICE consists of three interactive subsystems. The DSM provides the underlying communication para-

digm among threads of a parallel task. The DRS (distributed run-time subsystem) provides users with pro-

gramming tools to develop and execute DICE multi-threaded applications. The PS (parallel scheduler) is a

self-optimizing application-specific scheduler, and is responsible for thread scheduling and synchronization.

3. Design Issues of the DICE DSM

DICE DSM is designed for a cluster of workstations connected via a high-speed, low-latency local area

network. The architecture of a node in a DICE system is shown in Figure 1. Each node consists of a host

processor and a physical memory module. The traditional MMU is replaced by a DMMU. The network inter-

face is attached directly to the memory bus and contains a network processor and a dual ported memory visible



I/O Bus

I

Host Processor

Physical-address Cache ]

Host Memory [

I/D

_lfD
Memory Bus

Dual-ported
Memor_ Network

Network Processor
Memory

VA: virtual address
PA: physical address
IfD: instruction & data path

[ otherI/O's ] [ disk ] Ipackets

C LAN

Figure 1. The Architecture of a DICE Node

both to the host and network processors, simultaneously. The dual ported memory holds data structures for

managing the shared memory.

3.1. Programmer's View of DICE DSM Environment

In DICE, a parallel task consists of multiple threads that can run on a cluster of workstations (nodes), simul-

taneously. Memory pages required by each thread, whether code or data, are allocated physical memory

blocks, at the respective node, where the thread is running. Shared data pages are distributed and repli-

cated among the nodes as needed by the threads. The DSM system is designed to support the sharing of

data pages. The DSM system also maintains the coherency among replicated data copies.

Each parallel task has a root node, on which it was first loaded and executed. The root node main-

tains state information for all pages, including shared pages used in the application, while other nodes

maintain the state information for the pages that are loaded in their local systems.

Code and non-shared data pages of a thread are loaded in the physical memory of the node where



the thread is scheduled for execution. Shared data pages, on demand, are first loaded into the physical

memory of the node. That node becomes the home node for the page. A home node maintains the com-

plete state information for its pages. It ensures that the last copy of a page is not purged, and keeps track of all

copies of paragraphs belonging to its pages. Other nodes in the cluster, that have a copy of a shared page, keep a

pointer to the page's home node. When a thread makes an attempt to access a page for which it does not have a

copy, it interacts with the home node of that page in order to complete the memory access. When a node does

not know the home for a certain page, a home-info fault is triggered and a home-info request is sent to the root

node. The root node replies with the information about the home node for the requested page. If a home is not

yet assigned for the page, the root node assigns the first requesting node the status of home for that page. The

root node then updates its table and sends the page to the requesting node. The requesting node, upon receiving

the page and the assignment of home status, updates its page table and creates a paragraph map table for that

page.

3.2. Coherency Protocol

The memory coherency of DICE DSM is maintained at the paragraph level. A paragraph can simulta-

neously be read by multiple nodes, but it can only be written by one node at a time. Access fights to a paragraph

can be read-write, read--only, or none. An ownernode of a paragraph is the node that has read-write access to

that paragraph. The ownership of a paragraph may be transferred from one node to another upon demand.

There is no owner for a paragraph, when two or more hosts have read-only access rights to that paragraph. The

Information about the owner of a paragraph is maintained by the home node of the page containing the para-

graph.

When a read operation is issued to a paragraph by a node with none rights, a read fault is triggered and a

read request is sent to the paragraph's home. When a write operation is issued to a paragraph by a node with

none rights, a write-data fault is triggered and a write-data request is sent to the paragraph's home. When a

write operation is issued to a paragraph by a node with read--only access rights, a write--access fault is triggered

and a write-access request is sent to the paragraph's home. In each case the home directly or indirectly re-



spondswith therequestedinformation.Thecoherencyof paragraphsisbasicallymaintainedthroughawrite-

invalidateprotocol. Thedetailsof this protocolandits algorithmis shownin [11].

3.3. Management of Shared Memory

Page and paragraph tables are used to maintain the state information for shared pages and their paragraphs,

respectively. Each DICE application maintains its own set of these tables. A Page Table (PT), similar to a

traditional page table, provides the information about mapping the virtual addresses of pages to their corre-

sponding physical addresses, at their respective nodes. A Paragraph Validation Table (PVT), maintains the

information about the access rights of the page's paragraphs. Each entry of a PVTcontains a 2-bit field main-

taining the access rights of the local node to the respective paragraph. Note that there is no address translation

for paragraphs. Each node keeps a Page Table for Home information (PTH), which maintains the information

about the homes for its shared pages. Each home node of a page maintains a Paragraph Table (ParT) for that

page containing a pointer to the current owner of each paragraph and a list of nodes with read-only copies of

the paragraph. There is only one ParT for a page in the system. It is maintained by the home node of that page.

The PT and PVT are maintained in the dual-ported memory, inside the LAN interface. They are used by both

host and network processors. The PTH and ParT are maintained in the network subsystem, and are only used

by the network processor. Figure 2 shows the data structures for these tables.

DMMU is an extension of the traditional MMU. It is designed to support paragraph validation for efficient

handling of distributed shared memory. When data is not available locally and needs to be fetched from a

remote node, the DMMU triggers special access faults via an embedded hardware unit, PVLB (Paragraph Vali-

dation Lookaside Buffer) - to validate the access rights of paragraphs. The DMMU performs the traditional

TLB operations for all non-shared pages as well. When the DMMU does not find the entry it needs in its TLB,

it fetches the entry from the appropriate PT in memory. When an entry is loaded from the PT into the TLB, all

entries of its associated PVT (2 bits per paragraph) are simultaneously fetched and stored into the associated

PVLB. When an entry of the TLB is replaced, all entries of its associated PVLB are also replaced. Note, there

are no PVLBs for non-shared pages.



In Dual-ported Memory:
PT:

0
1

flags

!

physical page frame number

i !
!

, pointer to PVT
shared

PVT:

°I1
k acc rights

In Network Memory:

PTH:

0
1

n

(for home only)
ParT:

pParT ............

! i ! !

I !

, , pointer to ParT owner id
' (if home)I j

' home id
home

(set to 1 if local node is home)

Figure 2. Page and Paragraph Tables for Shared Pages in DICE

|
|

copyset

Figure 3 shows the structure of the TLB and the PVLB. Each entry in the TLB contains an address tag, a

physical page frame number, flags, and an S bit. The S bit is used to distinguish shared pages from non-shared

pages. Each TLB entry of a shared page has an associated PVLB, which has k two-bit access rights fields,

where k is the number of paragraphs within a page. The virtual address is grouped into three fields: a page

number, a paragraph number, and a paragraph offset. The page number is used as a key to match the address

tags in the TLB, while the paragraph number directly addresses the PVLB entries corresponding to the same

paragraph number. The latter operation will simultaneously select n PVLB entries, where n is the number of

PVLBs in the DMMU. Each PVLB has an associated logic L, which validates the access rights of the refer-

enced paragraph. By checking the stored two-bit access rights field and the current memory access type R/W,

logic L generates a Trap signal. The Trap signal is ONwhen any paragraph validation fault occurs. The Trap

causes a system trap and requires the software to distinguish the type of the current access fault and resolve it.



virtual address

[ page number ] para number [para offset ]

_V

q?_B

RrW

PVLB

_ L, Tr_

el

ta_ pfn flags S{

Trap

ace fightsR/W
Trap

RAWI

R

R

R

W

W

W

ace rig?hts Tra F comments

read-write no

read-only no

none yes read-data fault

read-write no

read-only yes write-access fault

none yes write-data fault

Logic L Function Table

Figure 5. TLB and PVIA3 Structures



If there is no Trap, the physical access to the paragraph proceeds without interruption. The function of logic L

is shown in the table inside Figure 3. The S bit of the selected TLB entry is used as a gate to control the final

selection of the Trap signal generated from the previously selected n PVLB entries. Note that the operations on

the PVLB are executed in parallel with the operations on the TLB, except for the final selection of the PVLB

output. Hence, if a memory reference does not generate a paragraph validation Trap, no significant extra delay

will be suffered by going through this additional PVLB unit compared to a traditional MMU.

The control unit of the DMMU contains the logic to manage the retrieval of entries from the PTs and the

PVTs in the dual-ported memory. It also controls the TLB and PLVB update operations, and handles other

related activities. When the retrieval of the entries of the PVT fails, the DMMU triggers a PVT trap resulting

into a home-info fault as described in section 3.1. Other paragraph validation faults are generated by the PVLB

as described above.

4. Performance Analysis

The performance of a DICE DSM system is mainly affected by the delays encountered in handling differ-

ent paragraph validation faults, which in turn depends on the execution delay of messages sent over the net-

work to resolve paragraph faults. In the following analysis, a performance metric is first defined. The system

and network model is presented. Thereafter, the application behavior model along with the protocol cost are

described. Finally, the performance results for different combinations of system configurations and applica-

tion profiles are shown and discussed.

4.1. Performance Metric

The performance of parallel systems is often measured in terms of speedup, which is the ratio of the execu-

tion time of a program run on a single processor to that run on a parallel system. We limit ourselves to the

speedup for the parallel part of an application only. We define the speedup for the parallelpart of an applica-

tion, Sp, as the ratio of the execution time of the parallel part of an application running on a single processor to

that running on a DICE DSM system.



LetusdenoteT s and Tasm to be the total execution time for the parallel part of an application by a single

node and by N nodes in a DICE DSM system, respectively. Let the processor speed of a single node be denoted

by R e MIPS. Let the total number of instructions required to be executed in the parallel part of the application

be denoted by Ia, and the average rate of shared data memory accesses per instruction be denoted by d,. Then,

I, 1 (___+ d,l.r_,_) (1)
r. = R-_ and r,_. = _ R,

where Tpcoa denotes the average protocol cost per shared data memory access, and will be derived in the fol-

lowing subsections, using an analytical system model. The term d, Ia Tp_ost represents the total overhead,

when using the DICE DSM. The speedup for the parallel part of an application Sp is therefore:

_ T, N (2)
Sp T,_,,. = 1 + d, Rp Tpco_

4.2. Network and System Model

In this analysis, a high-speed, low-latency ATM network is assumed to be the underlying local computer

network. The queuing time on the network is assumed to be small enough to be neglected. (A future study is

examining the effects of queuing delays.) The memory access unit is assumed to be one word (or four bytes).

Each paragraph has G words. An application is executed by N nodes.

A typical ATM network consists of a set of nodes connected via a mesh of switches. In an ATM network,

data is segmented into small fixed-length cells, routed, then reassembled at the destination using header infor-

mation contained in the cells. Due to the efficient structure of ATM frames, the waiting time for accessing the

network can be designed to be very short. In this model, each network message with length Lmsg takes

ty= + nce u tva_ processing time at the transmitting and the receiving nodes, nc,zl LcJRn transmission time,

and nc_ t,,_ processing time through an ATM switch; where nce_t is the number of cells needed to transmit the

whole message, or the ceiling ofLm_/(Lce H - Lha ) ;Lc, a andLha are cell size and header lengths, respective-

ly; tf= and tva, are fixed and variable parts of processing delays in the communicating nodes, respectively; R,, is

lO



thenetworkdatarate;t,e t is the average network switch latency a cell goes through in a typical ATM network.

Note that the processing time at the nodes includes the time for copying data between host memory and net-

work buffer, network processor latency, interrupt handling on reception of frames, and segmentation/reas-

sembly times.

The protocol cost is analyzed based on the time it takes for handling different kinds of paragraph validation

faults. This analysis includes all but home-info faults, since they only occur when a page is accessed by a node

for the first time. The fault handling time is expressed in terms of the total time for handling network messages,

including required interrupt handling delays at the local and remote nodes.

The whole message for either fault request or invalidation request can fit into a single ATM cell. The

messages for data reply will have the size of a paragraph, which may need one, two or more ATM cells depend-

ing on the size of the paragraph. The costs for these two different sizes of network messages, denoted by re-

quest messages, msg-r, and data messages, msg-d, are

t.,, (3)
tm__, : R--_+ t'x + t_ + t_

r o1'--,r 6 1,,..+,. ot"_-a = L=., - L_ -_. + t_. + L=_I - L_

From the memory coherency protocol, one can count the number of network messages involved in each

kind of fault. This message count also depends on the home and owner node relationship, as well as the number

of nodes within the copyset (the list of nodes with read-only copies of a paragraph), when a fault occurs. After

examining the protocol, one concludes that the cost of message are as follows: tmsg-, + t,,__ d for case el and

case nrd, 2t,,_g_r + 2tmsg_ a for case e2, (2N, a + 1)tmsg_ r + t ug_d for case nwd, and 2Nsa t,,___ for case

nwa. Here, N,a denotes the number of nodes within the copyset, when a fault occurs. Cases el and e2 repre-

sent the situation when a fault occurs while the copyset on the home node is empty. The former is the case when

the owner is the home, or when the requesting node is the home node. The latter is the case when the owner is

not the home and the requesting node is not the home node. Cases nrd and nwd and nwa represent the situa-

11



tionsfor a read fault, a write-data fault, a.nd a write-access fault occurrence, when the copyset on the home

node is not empty, respectively.

The average time spent for handling a paragraph fault depends on the probability of each of the above

cases as well as the probability of the number of nodes within the copyset, when a fault occurs. These probabil-

ities are estimated by simple probability models in this work. When a fault occurs, each node has equal proba-

bilities of 1,/N for having accessed and of (1 - l/N) for not having accessed this paragraph since the last time

the copyset was empty. Hence, the probability that the copyset is empty, when a fault occurs, is the case that

either none or any one node having accessed this paragraph. The probability that the number of nodes within

the copyset is i, when a fault occurs, denoted by p{Nse t = i} , is the case when any i+1 nodes have accessed

the paragraph. Therefore, we have

=o,_-(%,oo,'- (%,'1 ' -

( N )(1),+, (1-1).-,-, for/= 1,2,3, N-1 (6)P{N,_=i} = i+1 .....

In the DICE DSM, it is expected that a paragraph is accessed by its home node most frequently. Let x s

denote the probability that a paragraph is accessed by its home node. Other nodes are assumed to exhibit a

paragraph access probability that is uniformly distributed among all the non-home nodes with a total probabil-

ity of 1 - xs . Note thatx_ reflects the processor locality of parallel program behavior as described in [8].

The probability of each case is estimated by finding the conditional probabilities of each case, when either

read or write access faults occur. The probability of case nrd fault is 1. The rest of the probabilities are

(N - 2)(1 - x,)
P'= = 2(N - 1)x. + (N - 2)(1 - x.) p., = 1 - p.= (7)

(N - 1 - N.)(1 - x,)
p,,,._(N,._) = (N - 1)x. + N,=(1 - x,) + (N - 1 - N..t)(1 - x.) , Prm(N,.,) = 1 - p,,_(N,.t) (8)

wherePel'Pe2'Pnwcl' andpnwa are the probabilities of case el, case e2, case nwd, and case nwa, respectively.

12



Theaveragetimespentfor handlingaparagraphreadorwritefault,denotedby t,./ and tg, can be obtained

from Equations (3) through (8). After some simplification, we have

trf = (1 + e{Nse t = O}Pe2)(tmsg_ r + tmsg_d )

N-1

twf = [P{Nset = 0}(1 + Pc2) + S P{Nset = i}Pnwd(i)](tmsg-r + trnsg-d)
i=l

N-1

+ [E iP{Nset = i}](2tmsg -r)

i=l

(9)

(10)

4.3. Application Behavior Model and Average Protocol Cost

Torrellas et al. [19] proposed a model of sharing, which is classified into true sharing and false sharing.

Based on this sharing model, we divide the average protocol cost, Tpcost , into two parts: one part is caused by

true sharing misses, the other part is caused by false sharing misses. A miss is a true sharing miss, when a

processor or node misses, because the word was previously used by another node. A false sharing miss is

caused by multiple processors or nodes accessing different words within the same paragraph.

In this analysis, we first consider the application behavior independent of system architecture. The sharing

misses are based on an access unit (word), as the same way in the work done by Eggers and Katz in [7], instead

of a coherency unit (paragraph). Then, we integrate it with the effects of using a paragraph size consisting of

multiple words.

True sharing misses are varied significantly for different parallel applications, since they inherently de-

pend on the program behavior. True sharing misses are expected to increase as the number of processors or

nodes increases, since the frequencies and degrees of sharing increase. Hence, we use a simple linear relation-

ship to model this behavior. Letfi andfw denote the average rate of read faults per shared read data memory

access and average rate of write faults per shared write data memory access, respectively. Then, we have

fr =fro + frxN and fw = fwo + fwx N (11)

where f, o andf.,o are the base points offr andfw, respectively;f,,: andf_ are the incremental rates of/r andfw,

13



whenthenumberof nodesischanged,re@ectively.Notethatfr andf,, reflectthetemporallocalityof parallel

programbehavior.

Whenparagraphs,largerthanasingleword,aretakenintoaccount,thetruesharingmissesareexpectedto

dropastheparagraphsizeincreases.This isdueto thespatiallocalityof aparallelprogrambehavior,andthe

neighboringdatahavingbeenprefetchedbeforebeingused. Notethatweconsiderthesharingmissesonly

causedbythecoherencyprotocol,andignorethosecausedbyinsufficientphysicalmemoryto allocatespace.

Weusetheratio of miss ratios, proposed by Smith in [16], to model the effects of this behavior. Letrnrl and

m,,. denote the ratio of miss ratios when a paragraph size is G to that when a paragraph size is one word, and

when a paragraph size is G to that when a paragraph size is G/2, respectively. Then, we have

= mlOg2a (12)
mrl tr

Several research results [2,6,18] indicate that false sharing will be increased, when either the number of

processors or the coherency unit size is increased. Hence, we also use a simple linear relationship to model this

behavior. Let e_, denote the probability of false sharing misses. Then, we have

% = %0+ % N + % G

where e_ is the base point of ef_ ; ey= and _y are the incremental rates of efs, when N and G are changed,

respectively.

Combining Equations (9) through (13), one can derive the average protocol cost T_on as

Tpcost = mr4[(1 - W)frtr f + wfwt f ] + _fs[(1 -- W)trf + Wtw/] (14)

where w denotes the average rate of write operations per shared data memory access. In the above equation, the

two terms on the right side represent the protocol costs caused by true sharing misses and false sharing misses,

respectively.

4.4. Analytical Results

This section shows the effects of changing system structure and application profile on the speedup, Sp. A

14



typical value for each parameter is chosen to reflect a typical system architecture and a target parallel applica-

tion profile. We analyzed the effects on Sp by only changing one or two parameters at a time and fixing other

parameters to their typical values.

For program behavior parameters, the typical degree of sharing and access pattern are chosen to be 0. i for

both d s and w. The typical fault rates are chosen to be 0.001 for bothfr 0 andf_ o, and 0.001 for both f= andf_.

The typical locality factors are chosen to be 0.6 and 0.5 for mrr andxs. Typical false sharing factors are chosen

to be 0.000 l for e#o and 0.00001 for both tf= and el,r . These typical values are intended to represent the suit-

able network-based DSM applications and to reflect the significant effects of localities as well as false sharing.

For system parameters, the lengths for an ATM cell and header are fixed to 53 and 5 bytes, respectively.

Other parameters are varied to reflect the changes in of system technology and architecture. The typical system

is chosen to have 16 nodes and 100 MIPS. The typical network data rate is chosen to be 150 Mbps. The typical

ATM processing time is chosen to be 10 and 20 microseconds for tf= and tva r , respectively. This is derived

from the actual measurements of an ATM host-network interface in [4]. While, thet is chosen to be 10 microse-

conds, which corresponds to the store-forward delay time of a single switch for an ATM LAN.

Figures 4 through 13 show the expected behavior of Sp, when the size of a paragraph, G, is changed. This

behavior indicates that Sp increases as the paragraph size G increases up to a certain point. After that

point, Sp starts decreasing as G further increases. The peak values of Sp is when the paragraph size G is be-

tween 32 and 256 bytes. This is less than the page size used in a common operating system. This behavior

demonstrates the advantage of using a two-tier paging scheme. Note that the fixed small cell size (53 bytes)

used in ATM networks leads to the abnormal dent at a granularity of 64 bytes shown in Figures 5 through 9 and

11.

Figures 4 and 5 show that Sp decreases as the average rate of shared data memory accesses per instruction

d,, and the average rate of write operations per shared data memory access w increases, respectively. Figures 6

15



lo T __ --e--,,,=o.os

,r _._o.o.,
8t ./ \ -*-°'=°-_

_5_ J \ \

G (bytes/para)

Figure 4. Sp vs G for different ds

8 --e.--_o=o.ool,

_! frx=O.O0001_0._1

5 --.N--_o=o.oom,
frx=O.O001

w_4 --aJK---- frO=0.01,
frx-=0.1X_01

_ 2

0 J _ _ [ ', , i i I

¢0 <N ¢0 P4 O0 C_I

•- _, o
O4 00

G (bytes/para)

Figure 6. Sp vs G for different fro and frx

9 T

=f
7f

_6_ j

I;O

I'_V_=O.01

--')(_w=0.2

('I oo ¢N

G (bytes/pal-a)
I

Figure 5. Sp vs G for different w

_fwO=0.001,

7 ,_ II=_--_.O01,

6 /ll\"_& .-a-._,o_.oo,.

._ _ jI "_ .--)_,,,o=o._,.
¢1l _,/ =Jl= f_c=-0.0001

1 .

0 _ _ ,

_ N
e (bytes/para)

Figure 7. Sp vs G for different fw0 and fwx

_. s f /J/x ="--N.\X
, VIIA% %%

2 .

1

0 I

G (byte_para)

-.-,_)m- ran--_0.4

--II--m_-_0.5

_mrr-_._

"-')(-'- ran--0.7

"-]K'-- mrr--0.8

Figure 8. Sp vs G for different mar

7 I -'-(P-efso=o.ooo_,

efsx=-o.ooool,

6 _f,_y=o.oooooo_
_lI_._,

efx=0.00O01.
5 _,W=0.0OO0m

4. _o=o._,
ef,_=-O.O0001,

Q. efsy=O, O0001

_3" "-')_- _r_=o.oool,
i_. elr'sx=-0. 000001,

2 o_y_o.oooom

---It-- =',_=o.ooo_,

1 - eh_l=0.0001.
et_G-.=O.0(X3C01

0 _ _-._=o.ooool,

_ '--'_I-- _a_o._1,

G (bytes/para) en.c=o.ooom,
_sy=o.oooool

Figure 9. Sp vs G for different efso,efsx, and efsy

16



A

Ck

e_t
¢0

G (bytes/para)

Figure I0. Sp vs G for different Xs

8 T --"_Rn=IOM_

6 --')(--'_.=150Mbp_+Rn=2Gbl_

_s

: \\

G (bytes/para)

Figure 12. Sp vs G for different Rn

10 T

9+

8+

_7+

tl

--_'--'- RI:;=50Mips

_ Rp=l OOMil_

I \ _, -a-_=_._,,

IN CO ('N 100 IN

G (bytes/para)

Figure 1i. Sp vs G for different Rp

8 -r _rr_-_ou_
tvar=-20u_

T,_lo.--W-- TT_=-10tm,

Tvar=20us,

A Tsw=5Ou=

T'cat=_,

---)_---Trr_l Ou=,

=='T/ \N ,--,--"r--"
Tvar=150us,

T_10us

Tvar=2Ous,

© _ © IN _ IN T_w=_0u=_, _, =-----+--rr_=_oo_
c_ o= Tva,=-20u_

G (bytes) rs.,=_ 0u=I
Figure 13. Sp vs G for different Tfix, Tvar, and Tsw

18 ¸

16

14

_12 -

10-

"_G=32 _t_

4 - _ --I_G=e_ byte=

--'IIlI'--G=128 bytN2 i "-)_G=Z_ W=
01

IN _" _0 rid Cq "¢

N (# of nodes)

Figure 14. Sp vs N for different G

0.7 _ +G=32 byte=

- o.s_\_,, -'-_"

0.4

0.3

0.2

0.1

O I _ i i I i
e4 _1" (30 (D IN _1" OO

N (# Of nodes)

Figure 15. Sp/N vs N for different G

17



and 7 show that So decreases as the fault)ate parameters (i.e. fro ,f_,f,_ ,andre) increase. Figure 8 shows

that So decreases as the ratio of miss ratiosm,_ increases. Figure 9 shows that So decreases as the false sharing

parameters (i.e. e/0, ef_, and ef_ ) increase. Figure I0 shows that So increases as the probability of a para-

graph being accessed by its home node x, increases.

Figure 11 shows that Sp decreases as the processor speed Rp increases, as the benefits of parallel processing

diminish due to the increase in ratio of network overhead to execution time on each node. Note that the total

execution time for an application will still drop asRp increases, although Sp decreases. This asserts an impor-

tant expected fact that as processor speeds increase, it is important to reduce network overhead in order to ac-

complish the same high level of speedup.

Figure 12 shows that Sp increases as the network data rate R_ increases, and that the margin of gain in

Sv becomes smaller and smaller as the network data rate Rn increases. Figure 13 shows that Sp decreases as

the ATM processing and switching times (i.e. tf=, tvar , and tnn ) increase.

Figures 14 and 15 demonstrate the relationship of Sp and Sp/N with the number of nodes for different

paragraph sizes, respectively. Sp increases as N increases, and the margin of gain in Sp becomes smaller when

N is large.

5. Conclusions

In this paper, we present the design of a two-tier paging system for distributed shared memory,

where a paragraph, a much smaller memory unit than a page, is employed as the unit of coherency. The

system is modeled and the analysis demonstrates the benefits of the multiple granularity memory manage-

ment. The problem of false-sharing is alleviated, especially for systems with large page size and large objects.

The network latency for coherence maintenance is significantly reduced, since only a small amount of data has

to be transferred across the network for each remote memory access fault. Furthermore, the overhead of the

coherency protocol processing is reduced by introducing hardware support.

The proposed two-tier paging scheme is different from the two-level paging method used in a uniproces-

18



sor system. The latter bears two levels ot;address translations. In our two-tier paging design, the page is the

only address translation unit and the paragraph is the validation unit. There is no address translation for para-

graphs.

The concept of using a second tier page, namely a paragraph, is different from that of using a cache line.

The size of a paragraph is normally larger than a cache line. Although the paragraph coherency protocol and

algorithm is similar to the one used in cache-based DSM multiprocessor systems, the design and implementa-

tion consideration are quite different. In a network based distributed shared memory system communication

latency is significantly higher than that seen in a multiprocessor distributed shared memory system such as

DASH [ 12]. Network based DSMs are implemented in software with hardware support, while multiprocessor

based DSMs are implemented in hardware. Therefore, the allocation of and access to the coherency directories

are quite different.

The use of paragraphs as opposed to using a small page size reduces the complexity of the shared memory

management. If a small page size is used, very large page map tables will be required. By preserving the large

page size and using paragraphs only for shared pages the page map tables stay small and additional paragraph

map tables are needed for shared pages only. In addition to using the home node scheme we have distributed

the management of paragraphs to the home nodes of the pages only. Hence, the root node acts as the clearing

house for all application pages, and the home nodes act as the clearing houses for the paragraphs in their respec-

tive pages to which they are home.

A trace-driven simulation model that takes into consideration network queuing delays is under develop-

ment. This simulation model will be used to validate the analytical model described in section 4. This simula-

tion model is built with BONES DESIGNER[5], and the traces are generated by Tango Lite[ 10] when running

the parallel applications of Stanford SPLASH[16].

The current DICE DSM design is based on a strict consistency model and a write-invalidate coherency

protocol. Extensions by using multiple consistency and coherency protocols are under consideration. In future

version of DICE we plan to incorporate support for a relaxed consistency model to hide the large latency of

19



remotememoryaccessesby allowingbui'feringandmerging.

Acknowledgements

Therefereesprovidedvaluablecommentsonthecontentsof thisworkandthepresentationof thispaper.

References

[1] H. S. AIKhatib, Q. Li, C Jou, T. Chen, and H. Arafeh, "DICE - A Distributed Integrated Computing

Environment for Multi-Threaded Parallel Processing," Proceedings of the Third International Confer-

ence on System Integration, Vol. 1, August 1994, pp. 612-621.

[2] W. J. Bolosky, and M. L. Scott, "False Sharing and its Effect on Shared Memory Performance," Pro-

ceedings of the USENIX Symposium on Experiences with Distributed and Muttiprocessor Systems

(SEDMS IV), September 1993, pp. 57-72.

[3] J. B. Carter, J. K. Bennett, and W. Zwaenepoel, "Implementation and Performance of Munin," The

13th A CM Symposium on Operating Systems Principles, October 1990, pp. 152-164.

[4] A.T. Chandramohan, and H. M. Levy, "Limits to Low-Latency Communication on High-Speed Net-

works", ACM Transactions on Computer Systems, Vol. 11, No. 2, pp. 179-203, 1993.

[5] Comdisco Systems, Inc. BONES DESIGNER User's Guides. Comdisco Systems, Inc., 1993

[6] S. J. Eggers, and T. E. Jeremiassen, "Eliminating False Sharing," Proceedings of the 1991 Internation-

al Conference on Parallel Processing, I- Architecture, August 1991, pp. 377-381.

[7] S. J. Eggers, and R. H. Katz, "A Characterization of Sharing in Parallel Programs and its Applicability

to Coherency Protocol Evaluation", Proceedings of the 15th International Symposium on Computer

Architecture, May 1988, pp. 373-382.

[8] S. Eggers, and R. Katz, "The Effect of Sharing on the Cache and Bus Performance of Parallel Pro-

grams," Proceedings of the Third ASPLOS, April 1989, pp. 257-270.

[9] B. D. Fleisch, G. J. Popek, "Mirage: A Coherent Distributed Shared Memory Design," Proceedings of

the 12th A CM Symposium on Operating System Principles, December 1989, pp. 211-222.

20



[10] S.R. Goldschmidt,Simulationof Multiprocessors:AccuracyandPerformance,Ph.D.Thesis,Stan-

ford, 1993.

[11] C. Jou,H. S.A1Khatib,Q.Li, andA. T. Chen,CoherencyProtocolandAlgorithm of TheDICE

DistributedSharedMemorySystem,"Proceedings of the Seventh International Conference on Parallel

and Distributed Computing Systems, October 1994, pp. 796-801.

[12] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, and J. Hennessy, M. Horowitz, and

M. S. Lain, "The Stanford Dash Multiprocessors", IEEE Computer, Vol 25, No. 3, March 1992, pp.

63-79.

[13] K. Li, "IVY: A Shared Virtual Memory System for Parallel Computing," In Proceedings of the

1988 International Conference on Parallel Processing, pp. 94-101, August 1988.

[14] R. G. Minnich, Mether: A Memory System For Network Multiprocessors, Ph.D. Thesis, University

of Pennsylvania, 1991.

[15] U. Ramachandran, M. Ahamad, and M. Khalida, "Unifying Synchronization and Data Transfer in

Maintaining Coherence of Distributed Shared Memory," Proceedings of the 1989 International Con-

ference on Parallel Processing, pp. 160-169, August 1989.

[16] A. J. Smith, "Line (Block) Size Choice for CPU Cache Memories," IEEE Transactions on Comput-

ers, Vol. C-36, No. 9, September 1987, pp. 1063 - 1075.

[17] J. E Singh, W.-D. Weber, and A. Gupta, SPLASH: Stanford Parallel Applications for Shared-

Memory. Technical Report CSL-TR-91-469,Stanford University Computer Systems Lab, April 1991.

[18] M. Tam, J. M. Smith, and D. J. Farber, "A Taxonomy-Based Comparison of Several Distributed

Shared Memory Systems," ACM Operating System Review, Vol. 24, No. 3, July 1990, pp. 40--67.

[19] J. Torrellas, M. S. Lain, and J. L. Hennessy. "Shared Data Placement Optimizations to Reduce Multi-

processor Cache Miss Rates," Proceedings of the 1990 International Conference on Parallel Process-

ing, II- Software, August 1990, pp. 266-270.

21



Volume I

TtO

-- I . '.,w.

S.&,O PAULO, SP, BRAZIL AUGUST 15-19, 1994

EDITED BY :

PETEFiA. NG
NewJersey Institute of Technolob-'y

FUAD GA'rFAZ SOBRINHO
Instituto Intemacional de Integrac_o
de Sistemas

C.V. RAMAMOORTHY
university of California, Berkeley

RAYMOND 1".YEH
IntemationalSoftware Systems, Inc.

LAURENCE C. SEIFERT
Global Manufacturing and
Engineering, AT&I-



DICE - a Distributed Integrated Computing

Environment for Multi-Threaded Parallel Processing*

Hasan S. AIKhatib, Qiang Li, Chi-Jiunn Jou, Tiekun Chen, and Hassan Arafeh

Department of Computer Engineering, Santa Clara University

Santa Clara, CA 95053

Abstract - Often, the computing power of networks of

workstations is left unused. The objective of this project is to

develop a set of tools to take advantage of this potential com-

puting power and to create a platform suitable for large scien-

tific computations. This paper presents the architecture of a

Distributed Integrated Computing Environment (DICE)
consisting of a cluster of networked workstations. DICE

consists of three interactive subsystems. DSM (distributed

shared memory) provides the underlying communication

and computing paradigm for threads of a parallel task to ex-

ecute on a cluster of cooperatingworkstations. DRS (distrib-

uted run-time subsystem) provides users with programming
tools to develop and execute DICE multi-threaded applica-

tions. PS (parallel scheduler) is a self optimizing application

specific scheduler, and is responsible for thread scheduling
and synchronization.

1. Introduction

The majority of scaentific applications require a fairly
large amount of memory to execute a task. If a task is to

be partitioned into threads (sub-tasks) that are executed

in parallel, memory sharing is very. desirable, since it al-

lows sharing variables among threads within the same

task. Also, software based on shared memory is more

portable and machine independent as compared to that
of distributed memory which is architecture dependent.

The shared memory multiprocessor system has been

more and more popular for executing large scientific
applications for these reasons.

On the other hand, there is a tremendous amount of

computing power that is left unused in networks of work-

stations. Very often a workstation is simply sitting idle on

a desk. A set of tools can be developed to take advantage

of this potential computing power to create a platform

"Thiswork was supported by NASA-Ames Research Center granls
numberNCC 2-644 entitled "Parallel Proee_ing for Scientific
Computations".

suitable for large scientific computations. The integra-
tion of several workstations into a logical cluster of dis-

tributed, cooperative, computing station presents an al-

ternative solution to shared memory muttiprocessor

systems.

DICE (Distributed Integrated Computing Environ-

ment) is designed to meet these objectives. DICE em-

ploys virtual memory supported distributed shared

memory(DSM) as its underlying computing and commu-

rtication paradigm. It integrates DSM with a parallel

scheduling as well as a parallel programming subsystem.

In Figure 1, a distributed task '1' is running on four work-

stations, while a distributed task '2' is running on three

workstations. These distributed tasks are independent
of each other, and a workstation may have threads of two

or more tasks running on it, concurrently.
This paper presents the DICE architecture in the fol-

lowing sections. Section 2 identifies the related work in

this area. Section 3 describes the system architecture of
DICE. It consists of three subsystems, which are de-

seabed in sections 4 to 6, respectively. The interaction

among these subsystems is delineated in section 7. The

expected system performance is shown in section 8. Fi-

nally, section 9 gives a summary of the results accom-
)lished with this work.

Figure 1. Clusters of Cooperating Workstations

PIE_,fftG PAGE _AK NOT FILMED
0..8186-5502-X/94 $04.00 _ 1994 IEEE 612



2. RelatedWork

There are several systems designed to utilize the pro-

cessor power of idle workstations. These systems include

Sprite [24], V system [33], NEST [ 1], Butler [23], Condor

[20], REM [30], Stealth [17], and Sidle [16]. These sys-

tems provide remote execution or process migration faci-
lities. In addition to these features, DICE provides the

distributed shared memory (DSM) paradigm while using
these idle workstations.

A number of DSM systems over LANs have been de-

veloped recently [31]. Among them. Ivy [18.19] is im-

plemented on a network of Apollo workstations. The

memory is paged, and copies of pages may be replicated

in different hosts. Strict coherency semantics are used,

and the memory coherency is maintained by a write-m-

validate with dynamic ownership protocol. The owner of

a page is located via either a centralized manager, fixed
distributed managers, or an individual host which for-

wards the request. Ivy is used for applications employing
a multi-threaded task. All threads share the _ame virtu-

al address space. False sharing may occur in this system,

since its consistency or access unit (eg. word) is less than

the sharing unit (page). In addition, the single-write na-

ture of its protocol may cause a "ping-pong" behavior be-

tween multiple writers of a shared page, or the thrashing

problem.
To overcome false-sharing and thrashing, some sys-

tems employ special schemes. Mach [14] supports the
DSM with a shared memory server. False-sharing and

thrashing are handled by fault scheduling via a queuing

mechanism [13]. Clouds [27,2] is an object-oriented dis-

tnbuted operating system where objects can migrate

across processors. False sharing and thrashing are
avoided, since Clouds uses a single-writer-single-read-
er strict coherence semantics.

Mirage [12] is a DSM system implemented in the ker-

nel of the Locus distributed system [34]. Thrashing is re-

duced by using a time wmdow scheme, in which the sys-

tem guarantees that the writer of a page retains access to

a page for a fixed period of time. Munin [6,7] is a DSM

system implemented on the top of the V kernel [9],

which allows programmers to associate types with shared
data. Hence, muluple consistency protocols can be used.

A delay write update scheme is used for a read-mostly

protocol. Hence, thrashing can be reduced by using dif-
ferent combinations of data types.

Mether [21.22] is a software DSM implemented on

StmOS 4.0. It allows a process to access memory as either

consistent or inconsistent, and only a subset of a page to

be transferred. It also provides both demand-driven and

data-driven semantics for updating pages. All of these

operations are encoded m a few address bits in the virtu-

al address. False sharing and thrashing is reduced

through the use of the incoherent memory.

DICE presents a novel approach to handle the prob-
tern of false sharing and thrashing. The shared memory

is structured as a two-tier paging system. The first tier is

a page, which is the common page used in an operating

system. The second tier is aparagraph, which is a smaller
fixed-sized block of information contained within a page.

The introduction of small paragraph size improves sys-

tem performance, since it reduces the chance of false

sharing and the amount of data needed to be transferred
over the network.

Distributed run-time system, DRS _ another part of

DICE. A survey of object-oriented tanguages for paral-

lel environments is presented in [36]. Other program-

ruing languages and systems developed for distributed

systems are presented in [4]. Amber [8] and Orca [5,32]

are two such systems.
Parallel scheduler, PS is the third part of DICE. Sev-

eral approaches are taken by researchers at work on the

problem of parallel scheduling. They range from cen-
tralized control where global knowledge of the system is

maintained in one place [25,26], to distributed control
where all nodes have equal knowledge of the system.

Methods used vary from Baysian decision theory [28] to

data flow o_raphs [10].

The parallel scheduler in DICE is an extension to our

prior work done in MOPPS [3]. MOPPS is a self-tuning

parallel scheduler. It partitions the given application
into small tasks, schedules and coordinates these tasks

among network resources, and maintains a balanced load
between workstations without overburdening the com-

munication network.

3. System Structure

DICE is an experimental system which aims at pro-

viding a computing environment for the execution of

multi-threaded tasks. Figure 2 illustrates the system

workstation 1 workstation 2

; DsMI / Ps : DsM
os I/ os

workstation n

: DsMI
os ]

Figure 2. System Architecture of DICE

:l

I

613



structure of DICE. A parallel task may consist of multi-

ple threads that can be scheduled to run on a cluster of

workstations, sunultaneously. Athread is an active entity

that provides the notion of a computation. Threads on

separate workstations also share the same virtual ad-

dress space, and communicate with each other using

shared memory. Synchromzation of threads to access

shared resources is done using functions provided by the

distributed run-tune [ibrary.

4. Distributed Shared Memory

DICE DSM system consists of a cluster of worksta-

tions connected by a high-speed and low-latency local

area network. Other than a host processor and memory,
each node also has a network processor and a Distributed

Shared Memory Management Unit (DSMMU). DSMMU is
an extension of the traditional MMU to allow DSM to

handle shared memory efficiently. When data is not

available locally and needs to be fetched from a remote

host, DSMMU will trigger special access faults. Other-
wise, DSMMUjust performs the traditional TLB opera-

tions. An example of the architecture of a single host sys-
tem is shown in Figure 3. Note that this example uses

dual-ported memory, which allows both host processor

and network processor to access the data structures for

managing shared memory.

Each page of DICE DSM is the same as the common

page m a typical operating system, such as the SunOS.

Each page is further divided into several small equal-

Host Processor [

/D

_I/D

I/D

I Host Memory I Dual-po_ed

I I:O', I

C LAN

VA: virtual address

PA: physical address
I/D: instruction & data

I/D

pack¢_

Figure 3. The system structure of a host system.

sized paragraphs. Paragraphs are used as the unit for co-

herency. Pages are used as the unit for sharing. Memory

is allocated in a segment which may contain one or more

pages. Figure 4 illustrates the hybrid nature of this

memory structure.

Coherency Protocol

DICE mainly provides the computing environment
for the execution of multi-threaded tasks. A parallel

task consists of multiple threads that are scheduled to

run on a cluster of workstations, simultaneously. The

shared data of memory pages are also distributed and

replicated among these hosts. The DSM system sup-

ports the sharing of those pages, and maintains the co-
herency among replicated data copies. Each running

application has a root host, on which it was loaded and ex-
ecuted. The root host maintains the state irttbrmation

for all shared pages used in the application, while other
hosts maintain the state information for only the shared

pages that are used in their local systems.
DICE is a home-based virtual DSM system, in which

each shared page has a home host. A home host main-
tains the state information for its pages, ensures that the

last copy of a page is not purged, and keeps track of all

copies of the paragraphs within its pages. Other hosts

only keep the information about the locations of the
home host. A remote request for handling memory ac-

cess faults is always sent to the home host of the target

page. When a host does not know the home host for a

certain page and tries to access it, a home--inlb fault will
be triggered and a home-in/b request will be sent to the

:::ii:iiiiiiiii:iiii::ii:ii|'-...

I

/,.SelCn_m,-3,,",
,:/ //j: ,:.: f" ,,/,,

Segments in
shared virtual

address space

'%, '%,, '_,, ',, ',,% ',,

, ",, Pa_,,n ....

Pages in a

segment.

i •

L

i

I

i

,par_grap_

ParagraphS

in a page

Figure 4. Segments, pages, paragraphs m
DICE DSM structure



roothost. If the home host is not yet assigned, the root

host will assign the first requesting host to be home host

of that page, update its own database, and send back a

reply confirming this assignment. Otherwise, the root
host simply sends back a reply giving the information of

the home host for that page.
The memory coherency of DICE DSM is maintained

on paragraph level. Each paragraph has an owner host,
which has the ownership of this paragraph. An owner

host always has an up-to-date copy of its paragraph, and

is the only host which permits to write to the paragraph.

The ownership of a paragraph may be transferred from

one host to another according to the coherency protocol.
Information about the current owner of a paragraph is

maintained at the home host of the page containing the

paragraph.
A paragraph can simultaneously be read by multiple

hosts, but it can only be written by its current owner host.

The access right of a paragraph for a particular host may
be either read-write, read-only, or none. A host can ac-

quire or upgrade its access rights by sending requests to

the home host of the page in which the desired paragraph
resides.

A host can immediately perform read and write oper-

ations on a paragraph ff it has read-write access for that

paragraph, or perform read operations on a paragraph if

it has read-only access for that paragraph. When a read

operation is issued to a paragraph with none rights, a
read-data fault will be triggered and a read-data request

will be sent to its home host. When a write operation is

issued to a paragraph with none rights, a write-data fault

will be triggered and a write-data request will be sent to

its home host. When a write operation is issued to a para-

graph with read-only access, a write-access fault will be

triggered and a write-access request will be sent to its
home host.

When a page is initialized, the home host is the default

owner host for all paragraphs within this page. Any other

host will send a remote request to the home host when it

tries to access any paragraph of this page. If a read-data

request is received, the home host will return back a re-

ply containing the most recent copy of the desired para-

graph when itself is the owner host of that paragraph.

The access rights of both home and requesting hosts are

changed to read-only, ff itself is not the owner host, the
home host will forward this read-data request to the

owner host of that paragraph..The latter changes its ac-

cess right to read-only, and,then directly sends to the re-
questing host a reply which contains the most recent copy

of that paragraph. After it receives the reply, the re-

questing llost changes its access right to read-only and
sends to the owner host an acknowledgement with the

received reply. Having received this acknowledgement

with reply, the home host also changes its access right to

read-only and becomes the owner host of that traragraph.

If itself is the requesting host, the home host will directly

send the read-data request to the owner host. The latter

changes its access right to read-only, and then sends back

a reply which contains the most recent copy of that para-

graph. Having received this reply, the home host

changes its access right to read-only and becomes the
owner host of that paragraph.

If a write-data request is received, the home host will

return back a reply containing the most recent copy of

the desired paragraph when itself is the owner host and

no other host has a valid copy of that paragraph, ff multi-

ple valid copies exist, the home host will send invalidate

requests to all hosts on which those copies are located,
and wait for confirmations from all of them before re-

turning back the reply. Upon receiving the invalidate re-

quest, each host changes its access right of that para-

graph to none and returns its confirmation to the home
host. The access right of the home host is then changed

to none, while the requesting host becomes the owner

host and its access right is changed to read-write. If itseff
is not the owner host, the home host will forward this wri-

te-data request to the owner host of that paragraph. The

latter changes its access right to none, and then directly

sends to the requesting host a reply which contains the

most recent copy of that paragraph. After it receives the

reply, the requesting host changes its access right to
read-write and sends an acknowledgement to the owner

host. Having received this acknowledgement, the home

host updates its database and indicates that the request-

ing host becomes the owner host of that paragraph. If

itself is the requesting host, the home host will directly

send the write-data request to the owner host. The latter

changes its access right to none, and then sends back a

reply which contains the most recent copy of that para-

graph. Having received this reply, the home host

changes its access right to read-write and becomes the
owner host of that paragraph.

If a write-access request is received, the home host will
return back the wrzte-access confirmation when no other

host has a valid copy of that paragraph. If three or more

valid copras exast, the home host will send invalidate re-

quests to all hosts (except itself and the requesting host)

on which those copies are located and wait for confirma-
tions from all of them before returning back the write-ac-

cess confirmation. Upon receiving the invalidate request,

each host changes its access right of that paragraph to
none and returns its confirmation to the home host. The

access right of the home host is then changed to none,

while the requesting host becomes the owner host and its

access right is changed to read-write. If itself is the re-

questing host, the home host will directly send the invali-

date requests to all hosts (except itself and the requesting

host) which have valid copies of that paragraph and walt

615

i



for confirmations from all of them. Upon receiving the

invalidate request, each host changes its access tight to
none and returns its confirmation to the home host. The

home host then changes its access right to read-write and
becomes the owner host of that paragraph.

5. Distributed Run-time Subsystem

DICE DRS transforms the DICE DSM from a flat

space into an object--oriented structured space. DRS
consists of a set of tools that implement DICE. Applica-

tion Programmer's Interface, API, provides users with
programming tools to develop and execute DICE multi-

threaded applications. The tools used during program

development include a parallel language and its compil-

er, library interface functions, a linker, and other system
services.

A new Object-Oriented Dataflow Language (OODL) is

being designed as the parallel language used in DICE.

One of the important features of object-oriented pro-

grammmg is information hiding and encapsulation

[11,29]. It provides a higher level of data abstraction in

modeling real world objects. Such constructs are helpful

in designing parallel programs [35]. In general, parallel

programs are difficult to design because the programmer
must consider multiple execution threads instead of a

single thread. All possible interactions among the

threads must be considered. Also, parallel programs are

hard to maintain because a simple change may affect the

interaction pattern and results in global consequences.

Information hiding helps in reducing possible interac-

tions that need to be considered, while data encapsula-
tion helps in minimizing the maintenance effort when

program changes are needed.

While the object--oriented model provides a high level

of programming abstraction, it does not naturally exploit

parallelism of applications constructed with objects. A

dataflow model can expose and exploit the maximum

amount of parallelism, as well as express data depen-
dence from different levels of abstraction in a very natu-

ral way. The combination of the obiect oriented and da-

tallow concepts makes it easier for programmers to

design large scale multi-threaded parallel programs, and
to build re-usable concurrent software modules.

The OODL language, in DICE, is an extension of

C + ÷. Dataflow constructs are added to allow program-

mers to express parallelism explicitly. The parallel corn-

prier can be realized using a preprocessor to translate the
extended source code into C + + programs, which in

turn are compiled into object code using an existing

C + + compiler.

The run-time library interface functions provide a col-

lection of library routines that are linked w_th each paral-

tel program. They are invoked to support the service re-

quests made by system processes at run-ttme. The
OODL compiler wril use these functions to realize the

parallelism expressed in the application programs.
These functions can also be used by the application di-

rectly.
The linker will create a standard execution fite such as

a.out and an execution dependency tree called a.tree.

The information kept in the dependency tree includes

the names of the parallel threads: information about the

resources of the threads, such as starting address and

memory requirements: and the predecessors and succes-
sors of each thread. This information will be used by the

parallel scheduler to create and allocate shared memory

segments, and to schedule threads on different worksta-
tions at run-time. The linker will arrange shared vari-

ables into shared segments, to simplify the management

of shared memory by the DSM subsystem.

DRS also provide services for executing applications
at load-time and run-time. These services include the

use of the DICE daemon(s), as well as the automatic cre-

ation of a root process and alias remote processes for a

parallel task.
For each workstation that participates in DICE, a dae-

mon process has to be present. This daemon is responsi-

ble for invoking DICE alias processes on remote worksta-

tions. Each DICE application creates a root process
when it starts. The workstation where the root process is

running is referred to as the root workstation. A DICE

application may have zero or more alias processes. An

alias process is created by the root process on a remote
workstation through a DICE daemon as needed.

The root process is a multi-threaded process which
runs on the root workstation. It is created when the par-

allel task is submitted to the system. InD[CE, the thread

is the unit of execution, while a process is the unit of re-

source allocation. Each process contains one or more
threads. The root process provides the virtual address

and system resources for threads running on the root
workstation. The root thread is the first thread of a par-

allel task. It is responsible for creating the parallel

scheduler and DSM manager threads before any applica-
tion threads start to run. It then becomes the first appli-

cation thread running on the root workstation. The root

process terminates when the parallel task is done.
An alias process is a reincarnation of the root process

on each remote workstation. An alias process is created

when a thread is scheduled to run on a remote worksta-

tion for the first time. The alias process supports the

same virtual address as the root process and system re-
sources for threads running on its workstation. These

threads include an alias primary thread, DSM manager,

and application threads. An alias primary thread is re-

616



sponsxbleforcreatingitslocalDSM manager as well as

the first application thread running on its local worksta-

tion. This alias primary thread, then, listens to thread-

create requests coming from the network. Subsequently,

it creates these requested threads of its own parallel task

on its local workstation. The alias primary thread ancl

DSM manager of a remote workstation will remain when

all of its application threads are terminated. The alias

primary thread waits for thread-creation requests from

the parallel scheduler, while DSM manager waits for
memory access requests from other workstations. When

the root process is done, the parallel scheduler sends out

a termination signal to all the alias processes of that par-

ticular task. This is to ensure that all alias processes are

terminated before the termination of the root process.

The DICE daemon process is a server that is responsi-
ble for invoking alias processes on a remote workstation.

After invoking an alias process, the daemon process will

have nothing to do with this application task. It will go

back to listening to requests from the network, ff a work-

station does not want to participate InDICE, it can simply

terminate this daemon process. A DSM manager is an

active entity on each workstation responsible for handl-

ing memory access faults. EachDSM manager maintains

a memory mapping table that maps each memory page to
its local workstation or other remote workstations.

6. Parallel Scheduler

DICE PS is a serf--optimizing application-specific

scheduler. It is responsible for thread scheduling and

synchronization. PS is implemented as a thread within

the parallel task. Each parallel task has one PS running

on the workstation where the task initially starts to run.

This special thread is created during the task load-time.
When an application needs to create another thread

or to terminate itseff by joining with other threads, it

passes control of execution to the PS. The PS will find

the fastest way to run the application by using the infor-

mation in a Task Execution Dependence Tree. which is

created as an auxiliary file during the compilation of the

source program.
The PS decides whether the local workstation has

enough resources to run the different threads, which
threads to send to remote workstations to run, and which

remote workstations to send them to. It uses several

tools to make intelligent decisions at run time. Those
tools are: a CPU load estimator, a network load estimator,

an intelligent database, and a bidding process.

The CPU load estimator runs on every workstation on

the network and keeps track of the load on that worksta-
tion. When the time comes to run a thread on the local

CPU, PS looks at the CPU load estimator for information

about the load on the local CPU. Similarly, when a bid

amves at a workstation, the decision whether to accept

the bid or not depends partially on the readings taken by
the CPU load estimator.

The network load estimator monitors the traffic on the

network. The network load estimator gives PS an up-to--

date reading of the network traffic. Smaller partitions

that takes a relatively short time to execute can become

too expensive to ship if transmission times become too

sever. In that case, it might be better to keep them on the

local workstation, defer shipping them, or combine two

or more into larger partitions.

The network load estimator has the responsibility to

provide PS with real time network traffic information.

The network load estimator can be as simple as a bus moni-
tor which continually updates a regaster (interpreted as

an integer) signify network utilization levels of high, me-

dium, or low.

A small and efficient database records thread per-
formance on each workstations under different CPU and

network load conditions. This database allows the bid-

dingprocess to generate a reasonable estimate of the ex-

pected run time of a thread on a particular target work-
station.

The intelligent database is designed to categorize dif-

ferent higher level operations of modules and parame-

tertze their computational and communication time re-

quirements. The contents of intelligent database are
tailored to the installation where it resides. The data-

base is initiated with the types of applications being run,

and its contents are updated as new applications are in-
troduced.

When PS decides that it is best to send some threads to

a remote workstation to run, it needs a way to pick those

workstations. Instead of forcing other, possibly heavily
loaded, workstations to take some of the threads, PS asks

for help through the bidding process. It stmply asks for

help in running a given thread and tells the other work-

stations about the memory and CPU requirements of the

thread. This information is found in the intelligent data-
base.

Upon each task completion, the intelligent database is

updated to reflect the most current experience. When

no data is available about an application, we can run it the

first time with gross overesurnates, or underestimates,

and let intelligent database learn about it. Simulation may
also be used to obtain initial esumates.

It is essential that intelligent database be queried and

updated quickly as it would be a system bottleneck and

might slow down the entire system if not properly de-

signed. Ultimately intelligent database can be implem-
ented in hardware as a content addressable memory.

617



In the bidding algorithm, PS weighs execution time
versus shipping and management tune for each resident

module. I.f execution time is greater than shipping and

management tune and the loads on the local workstation

is higher than a predefined threshold, the parallel sched-

uler broadcasts a global message through the network

asking for help. This "help wanted" message includes
enough reformation about the module to be sent enab-

ling other workstations to determine if they can offer

their help. The information includes the estimated mod-

ule execution tune, memory and disk requirements, and

any other re.formation that is useful m making the deci-
sion.

Those workstations which can potentially bid to accept

the module for processing will examine this workload in-
formation and determine whether it is feasible to bid. Ira

workstation is capable of assisting, it will return a mes-

sage stating its availability, and will commit to this bid for

a period long enough for the asking workstation to re-

ceive the return message and act on it. Through this pro-

cess. workstations that bid for help and are not accepted

will waste little time before considering later "help
wanted" messages.

Each workstation will monitor the network before

sending its reply to determine if any other workstations

have responded to the bid and will not send it reply if any

workstation did respond. It is assumed that the fin'st

workstation to reply will get the job, and there is no need
for others to do so. PS sends the module to the first

workstation that replies to the request.

PS repeats the help wanted messages for a given task

until either it receives a response or the task is at the

point where it has to be executed in order not to delay the
rest of the tasks.

As a thread is scheduled on a remote workstations to

run, its respective virtual address space segments are al-
located physical memory blocks on the same worksta-

tions. PS takes the consideration of available memory re-

source on a workstation when scheduling a thread over

there.

7. Interactions and Integration

DSM, DRS, and PS are three separate subsystems of

DICE. They interact with each other to provide an inte-

grated environment and to cooperatively work to provide

the distributed computing paradigm for a parallel task.

After a parallel task is compiled and linked, a task ex-
ecution tree file a.tree is created. PS uses this tree to

perform the parallel thread scheduling. When a thread

is to be created, the root process will transfer execution
control to PS. The latter will use a.tree fide to schedule it

on a local or remote workstation, and then transfer ex-

ecution control back to the application. Similarly, the ex-
ecution control will be transferred to PS when a thread

terminates itseLf by joining other threads. Figure 5 shows

the overall interaction between DRS and PS. The paral-

lel compiler and linker create the image of virtual

memory segments and the task execution tree. PS is in-

voked when a thread needs to fork or join with other
threads.

Furthermore, the root thread of DRS is responsible

for creating PS. The alias thread on each remote work-

station listens to remote thread creation requests sent by

PS, and creates threads locally.

Similarly, the active entity of the DSM subsystem

DSM thread is created by the root thread or alias threads
on different workstations. In the meantime, the data

structures needed by, DSM thread are also created and
initialized.

The efficiency of handling shared memory by DSM
subsystem is significantly affected by the layout of shared

variables on DSM memory segments and the allocation

of physical memory on different workstations by the par-

allel programming subsystem and parallel scheduler.

Figure 6 shows an example of the run time behavior of

the DSM subsystem.

Parallel

Compiler.

Maker

Figure 5.

Mu|ti-Threaded

__ wo o0o A_''-' -"' " "" " Workstation
,,_?z?, B

',i Wontstation X

/ //

Shared Virtual

Addt_ Space m

Scheduling of a Parallel Task on a Cluster of Workstations

618



In Figure 6, the vu'tual address space of the parallel
task is on the teft side. Each shadowed paragraph within

the virtual address space represents a single virtual

memory segment. The physical address spaces on differ-
ent hosts are on the right side. The shadowed paragraph

within a host denotes a block of a physical memory, and

the other structure represents the segment map table.

The paragraphs wath arrowheads represent the corre-

sponding mappings between the memory segments and

the physical memory blocks on different hosts.

8. Performance and Discussion

The performance of DICE DSM system has been stu-

died using an analytical model, which derives an expres-
sion for the speedup of the parailet parr of an application (or

S_ ). The effects of changing Sp on system structure

and application behavior is shown and discussed in [15].
Some of these results are shown in this section. The sys-

tem and application parameters used in this model are
summarized in Table 1 in Appendix.'

High-speed and low-latency ATM LAN is assumed in
this model. We also assume that queuing time on the

network is negligible. This assumption is justified by the

results shown in Figure 7 (Appendix), which indicates

that the gain in S_ becomes smaller and smaller as the

network data rate R_ is increased. Figure 8 (Appendix)

shows that Sp decreases as processor speed R e in-

creases. Note that the total execution time for an appli-

cation wiU still be reduced as Rp increases, although

Sp decreases.

Figure 9 (Appendix) shows that S_ increases as the

number of paragraphs per page, k, increases up to a cer-

tain point. After that point, S_ slightly decreases ask

further increases. Furthermore, S, is approxtmately

the same for a fixed paragraph stze. which is P/k. This

behavior demonstrates usefulness of the use of a para-

graph with a smaller granularity than a page. Figure 10

(Appendix) shows a similar behavior, for S, m relation-

ship with the number of hosts N.

9. Conclusions

In this paper, we presents the architecture of a distrib-

uted computing environment DICE, which integrates
distributed shared memory with parallel scheduling and

distributed run-tune management. The analysis of per-

formance model demonstrates the usefulness of the use

of a paragraph with a smaller granularity than a page in

DICE system. This smaller granularity reduces the
chance of false sharing and the data size needed to be

transferred over the network.

The coherency protocol for this two-tier paging sys-

tem is also being simulated in software. The perform-

ance of DICE DSM is also being evaluated using a simu-
lation model, which takes into consideration network

queuing delay. The Object-Oriented Dataflow Lan-

guage and self-tuning Parallel Scheduler are under de-

velopment.
The current DICE DSM design is based on the strict

consistency model and write-invalidate coherency pro-

tocol. This design is intended to be extended by using

multiple consistency and coherency protocols. Multiple

protocols will be used to tailor broader application re-

quirements. DICE will incorporate the DSM design
with a relaxed consistency model to hide the large laten-

cy of remote memory accesses by allowing buffering and

merging.

References

Root Workstation
Remote

Workstation 1

I I

I I
I I

Virtual Address Remote

Space Workstation 2

Figure 6. Distributed Shared Virtual Memory

[i] R. Agrawal, and A. K. Ezzat. "Location Independent
Remote Execution in NEST," IEEE Transactions on So[t-
ware Engineering, Vol 13, No 8, 1987, pp. 905-912.

[2] R. Ananthanarayanan, S. Menon. A. Mohindra, and U.
Ramachandran, "Experiences in Integrating Dtsmbuted
Shared Memory, _nth Virtual Memory Management."

ACM Operating System Review, Vol. 26, No. 3. July 1992,

pp. 4-26.
[3] H. ,aa'afeh and H. S. A1Khatib, and H. Barmclough,

','MOPPS: A Scheme for Managang Parallel Scientific

Programs in a Distributed Architecture," Proceedings of
COMPCON'90. the Annual International Computer
Conference of the IEEE Computer Soaety, February 25
- March 2, 1990, San Francisco, CA, pp 387-395.

[4] H. E. Bal. J. G. Steiner, and A. S. Tanenbaum, "Pro-
gramming Languages for Dismbuted Compuung Sys-

619



tems." ACM Computing Surveys, September 1989, pp.

261-322.

[5] H. E. Bal, M. E Kaashoek, and A. S. Tanenbaum. "Orca:

A Language For Parallel Programming of Distributed

Systems." [EEE Transactions on Software Engineering,

Vol 18, No. 3, March 1992. pp. 190-9-.05.

[6] J. K. Bennett. J. B. Carter, and W Zwaenepoel, "Adap-

tive Munin: Distributed Shared Memory Based on Ty-

pe-Specific Memory Coherence." Proceedings o1:the 2nd

ACM SIGP[_.AN Symposium on Principles and Practice ot:

Parallel Programming, 1990. pp. 168-175.

[7] J. B. Carter. J. K. Bennett. and W Zwaenepoet. "Imple-
mentation and Performance of Munin." The 13th ACM

Symposium on Operating Systems Principles. October

1990. pp. 152-164.

[8] J. S. Chase. E G. Amador, E. D. Lazowska. H. M. Levy,

and R. J. Littelefietd. "The Amber System: Parallel

Programming on a Network of Multiprocessors," Pro-

ceedings of the 12th ACM Symposium on Operating Sys-

tem Principles. December 1989, pp. 147-158.

[9] D. R. Cheriton. '`The V Distributed System." Communi-

cation o1:the ACM, Vol 31, No. 3. pp. 314--333. 1988.

[10] W W Chu. and L, M-T. Lan. "Task Allocation and

Precedence Relations for Distributed Real-Time Sys-

tems," [EEE Transactions on Computers, Vol C-36, No. 6,

June 1987, pp. 667--679.

[11] B. Cox. Object Oriented Programming - An Evolution-

ary Approach. Addison-Wesley, 1986.

[12] B. D. Fleisch. G. J. Popek, "Mirage: A Coherent Dis-

tnbuted Shared Memory Design." Proceedings o1:the 12th

ACM Symposium on Operating System Principles. Decem-

ber 1989. pp. 211-222.

[13] A. Forin. J. Barrera. and R. Sanzi. Design, Implemen-
tation, and Performance Evaluation of A Distributed

Shared Memory Server for Mach, Technical Report

CMU--CS-88-165. Carneig_e-Mellon University, Com-

puter Science Department. August, 1988.

[14] A. Forin, J. Barrera. and R. Sanzi. "The Shared

Memory Server." Proceedings 1989 Winter USENIX Tech-

nical Con/erence. February, 1989. pp. 229-244.

[15] C Jou. H. S. AIKhatib. and Q, Li. Performance Analysis

of DICE Distributed Shared Memory System. Dismb-

uted Computing Lab Technical Report No. 03281994,

Department of Computer Eng.ineering, Santa Clara

University, 1994.

[16] J. Ju. G. Xu. and J. Tad, "Parallel Computing Using Idle

Workstations." Operating System Review. July 1993, pp.
87-96.

[17] P. Krueger. R. Chawla. "The Stealth Distributed Sched-
uler." Proc. llth ICDCS 1991.

[t8] K. Li. Shared Virtual Memory on Loosely Coupled

Muttiprocessors. Ph.D. Thesis. Yale, September. 1986.

[19] K. Li. "IVY: A Shared Virtual Memory System for Par-

allel Computing." In Proceedings of the 1988 Internation-

al Conference on Parallel Processing, pp. 94--101. August
1988.

[20] M. T. Litzkow. "Condor- A Hunter of Idle Worksta-

tions." Proc. 8th ICDCS 1988. pp. 104-111.

[21] R. G. Minnich and D. J. Farber, "The Mether System:

A Distributed Shared Memory for SunOS 4.0." In Useu-

nix -Summer 89. Usenix. 1989.

[22] R. G. Minnich and D. J. Farber. "Reducing Host Load,

Network Load, and Latency in a Distributed Shared

Memory," Proceedings oft he I Oth International Confer-

ence on Distributed Computing Systems, Pans. France,

June 1990.

[23] D. A. Nichols. "Using Idle Workstations in a Shared

Computing Environment." Proceedings oft he 11th ACM

Symposium on Operating Systems Princzples, December

t987, pp. 5-12.

[24] J. K. Ousterhout. A. R. Cherenson. E Douglis, M. N.

Nelson. and B. B. Welch. ''The Sprite Network Operat-

ing System", IEEE Computer, February 1988. pp. 23-36.

[25] J. Pasquale. Knowledge-Based Distributed Systems

Managements, Report No. UCB/CSD 86/295. UC

Berkeley, Computer Science Division. June 1986.

[26] J. Pasquale. Using Expert Systems to Manage Distrib-

uted Computer Systems, Report No. UCB/CSD 87/334,

UC Berkeley, Computer Scaence Division, January 1987.

[27] U. Ramachandran, M. Ahamad. and M. Khalida, "Uni-

f3ring Synchronization and Data Transfer in Maintaining

Coherence of Distributed Shared Memory," Proceedings

o1:the 1989 International Conference on Parallel Process-

ing, pp. 160-169. August 1989.

[28] J. A. Stankovic. "An Application of Bayesian Decision

Theory to Decentralized Control of Job Scheduling",

[EEE Transactions on Computers. Vol C-34. No. 2, Feb-

mary 1985.

[29] B. Stroustrup, "What is "Object Oriented Program-

ming"?," [EEE Software. Vol 5. No. 3. May 1988. pp.

10-20.

[30] G. C. Shol a. "A Distributed Facality for Load Shanng

and Parallel Proce_ing Among Workstations," Journal of

System and So/tware. Vol 14. No. 3. pp. 163-172.

[31] M. Tam. J. M. Smith. and D. J. Farber. "A Taxonomy-

Based Comparison of Several Distributed Shared

Memory Systems." ACM Operating System Review. Vol.

24, No. 3, July 1990. pp. 40--67.

[32] A. S. Tanenbaum, M. E Kaashoetc andH. E. Bat,, "Par-

allel Programming Using Shared Objects and Broadcast-

ing," [EEE Computer, Vol 18. No. 3. August 1992. pp.

10-19.

[33] M. Theimer. K. Lantz. and D. Cheriton. "Preemptable

Remote Execuuon Facaliues for V-System.'" Proceedings

of the lOth ACM Symposium on Operating Systems Princi-

ples. December 1985. pp. 2-12.

[34] B. Walker, G. Popek. R. English. C. Kline. and G.

Thiel. "The LOCUS Dismbuted Operating System."

Proceedings of" the 9th Symposium on Operating System

Principles IZ 5 (November 1983). pp. 49-70.

[35] Y. Wu. T. G. Lewis. "Parallelism Encapsulation in

C + + .'" In Proceedings o1:the 1990 International Confer-

ence on Parallel Processing, pp. 35--4Z 1990.

[36] B. B. Wyatt. IC Kavi. and S. Hufnagel. "Parallelism in

Object-Oriented Languages: A Survey." IEEE So/rware.

November 1992. pp. 56--86.

620



Appendix

parameters

N

Rn

Rp

M

P

k

meanings

the number of hosts executing an application

network data rate

[processor speed

the total bytes of shared memory space for the running application

Ipage size

Ithe number of paragraphs per page

]the percentage of data memory accesses for total instructions

Nrf the number of read faults per 1,000,000 memory referenced per host

the number of write faults per 1,000,000 memory referenced per host

spatial locality factor

Nwf

Xs

No, NI, g temporal locality factors

Table1. System and application parameters in the performance model.

8 T

6

5

3

2

1

Oli!ll!qllbl

g

Rn-lO_ bgs

Rn-_OM _s

R n-LOON bOs

R n-tSON _s

Rn-_SON b_

Figure 7. Sp vs k for different Rn. N=16, Rp=50Mips,

M=64kbytes, P=4kbytes, d=0.4, Nrf=500,

Nwf=10, Xs=0.5, N0=10, NI=100, g=100.

7

6

5

2

1

(_ • _

_ Rpot00N _a

Rp,QOON 1_1

I [ ! ! t I

C'J Q

Figure 8. Sp vs k for differentRp.N=16, Rn=150Mbps,

M---64kbytes, P---4kbytes, d=0.4, Nrf=500,

Nwf=10, Xs=O.5, N0=-10, NI=100, g=100.

2

1

0 _ I i i ! i

P _LlrbYrJs

P_tkby_ls

Figure 9. Sp vs k for different P. N=16, Rn=150Mbps,

Rp=50Mips, M=64kbytes, d=0.4, Nrf=500,

Nwf=10, Xs=0.5, N0=10, NI=100, g=100.

10-

B---41--41
0 ! : _ t i

_ tt_ CI

N

,coL6

Figure 10. Sp vs N for different k.Rn=150Mbps,d=0.4,

Rp=50Mips,M=64kbytes,P--4kbytes,Xs---0.5,
Nrf=500, Nwf=10, N0=I0, NI=100, g=100.

621


